Bài 5 trang 79 SGK Hình học 11


Giải bài 5 trang 79 SGK Hình học 11. Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB và AC (h.2.76), E là điểm trên cạnh CD với ED = 3EC.

Đề bài

Cho tứ diện \(ABCD\). Gọi \(M\) và \(N\) lần lượt là trung điểm của \(AB\) và \(AC\) (h.2.76), \(E\) là điểm trên cạnh \(CD\) với \(ED = 3EC\). Thiết diện tạo bởi mặt phẳng \((MNE)\) và tứ diện \(ABCD\) là:

(A) Tam giác \(MNE\);

(B) Tứ giác \(MNEF\) với \(F\) là điểm bất kì trên cạnh \(BD\);

(C) Hình bình hành \(MNEF\) với \(F\) là điểm trên cạnh \(BD\) mà \(EF // BC\);

(D) Hình thang \(MNEF\) với \(F\) là điểm trên cạnh \(BD\) mà \(EF // BC\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng tính chất: Nếu hai mặt phẳng chứa hai đường thẳng song song thì cắt nhau theo giao tuyến song song với hai đường thẳng đó.

Lời giải chi tiết

Ta có: \(MN\) là đường trung bình của tam giác \(ABC \Rightarrow MN // BC\).

\(\left\{ \begin{array}{l}\left( {BCD} \right) \supset BC\\\left( {MNE} \right) \supset MN\\MN//BC\\E \in \left( {MNE} \right) \cap \left( {BCD} \right)\end{array} \right. \)

\(\Rightarrow \) giao tuyến của hai mặt phẳng \((MNE)\) và \((BCD)\) là đường thẳng qua \(E\) và song song với \(BC\).

Đường thẳng này cắt \(BD\) tại \(F\). Do đó \(MN//EF//BC\).

Ta có \(MN = \frac{1}{2}BC\).

Áp dụng định lí Ta-let trong tam giác \(BCD\) ta có: \(\frac{{EF}}{{BC}} = \frac{{DE}}{{DC}} = \frac{3}{4} \) \(\Rightarrow EF = \frac{3}{4}BC \Rightarrow MN \ne EF\).

Vậy \(MNEF\) là hình thang.

Chọn đáp án D.

 Loigiaihay.com


Bình chọn:
3.5 trên 2 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài