Bài 8 trang 120 SGK Hình học 11

Bình chọn:
3.9 trên 10 phiếu

Giải bài 8 trang 120 SGK Hình học 11. Cho tứ diện đều ABCD cạnh a...

Đề bài

Cho tứ diện đều \(ABCD\) cạnh \(a\). Tính khoảng cách giữa hai cạnh đối diện của tứ diện.

Phương pháp giải - Xem chi tiết

- Chứng minh khoảng cách giữa hai cạnh đối của tứ diện đều chính là độ dài đoạn thẳng nối hai trung điểm của hai cạnh đối diện.

- Tính toán dựa vào các tính chất tam giác đều.

Lời giải chi tiết

Gọi \(M, N\) lần lượt là trung điểm của \(AD\) và \(BC\),

Ta có: \(\Delta BAC = \Delta BDC(c.c.c)\) \( \Rightarrow AN = DN\) (hai đường trung tuyến tương ứng)

\(\Rightarrow \Delta AND\) cân tại \(N\).

\(\Rightarrow\) Trung tuyến \(MN\) đồng thời là đường cao \(\Rightarrow MN\bot AD \,\,\, (1)\)

Chứng minh tương tự, \(\Delta MBC\) cân tại \(M \Rightarrow MN\bot BC \,\,\,\,\, (2)\)

Từ (1) và (2) suy ra \(MN\) là đường vuông góc chung của \(BC\) và \(AD\).

\( \Rightarrow d\left( {AD;BC} \right) = MN\)

Tam giác \(ABC\) đều cạnh \(a\) nên \(AN={{a\sqrt 3 } \over 2}\)

Áp dụng định lí Pytago vào tam giác vuông \(AMN\) ta có:

\(MN = \sqrt {A{N^2} - A{M^2}}  = \sqrt {{{3{a^2}} \over 4} - {{{a^2}} \over 4}}  = {{a\sqrt 2 } \over 2}\)

Vậy \(d\left( {AD;BC} \right) = \dfrac{{a\sqrt 2 }}{2}\).

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - Bài 5. Khoảng cách

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng