Bài 6 trang 119 SGK Hình học 11


Đề bài

Chứng minh rằng nếu đường thẳng nối trung điểm hai cạnh \(AB\) và \(CD\) của tứ diện \(ABCD\) là đường vuông góc chung của \(AB\) và \(CD\) thì \(AC = BD\) và \(AD = BC\).

Video hướng dẫn giải

Lời giải chi tiết

Gọi \(I,J\) lần lượt là trung điểm của \(AB,CD\). Theo giả thiết \(IJ \, \bot \,  AB, IJ \, \bot  \, CD\).

Qua \(I\) kẻ đường thẳng \(d \,  //  \, CD\), lấy trên \(d\) điểm \(E, F\) sao cho \(IE = IF = \dfrac{CD}{2}\)

Ta có \(IJ  \, \bot  \, CD\,\, (gt) \Rightarrow IJ \bot EF\), lại có \(IJ \,  \bot  \, AB \, \,(gt)\)

\(\Rightarrow IJ  \, \bot  \, (AEBF)\).

Ta có \(CDFE\) là hình bình hành có \(IJ\) là đường trung bình

\( \Rightarrow CE  \, //  \, DF \,  //  \, IJ\) 

\( \Rightarrow \left\{ \begin{array}{l}CE \,  \bot \,  \left( {AEBF} \right) \Rightarrow CE \,  \bot  \, BE\\DF \,  \bot \,  \left( {AEBF} \right) \Rightarrow DF \,  \bot  \, AF\end{array} \right.\)

Ta có: \(\Delta AIF = \Delta BIE(c.g.c)\) suy ra: \(AF=BE\)

Xét \(∆DFA\) và \(∆CEB\) có:

  +) \(\widehat E = \widehat F( = {90^0})\) 

  +) \(AF=BE\)

  +) \(DF=CE\)

\(\Rightarrow ∆DFA=∆CEB(c.g.c) \Rightarrow AD = BC\). 

Chứng minh tương tự ta được \(BD = AC\).

 Loigiaihay.com


Bình chọn:
4 trên 25 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2023 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.