
Đề bài
Chứng minh rằng nếu đường thẳng nối trung điểm hai cạnh \(AB\) và \(CD\) của tứ diện \(ABCD\) là đường vuông góc chung của \(AB\) và \(CD\) thì \(AC = BD\) và \(AD = BC\).
Video hướng dẫn giải
Lời giải chi tiết
Gọi \(I,J\) lần lượt là trung điểm của \(AB,CD\). Theo giả thiết \(IJ \, \bot \, AB, IJ \, \bot \, CD\).
Qua \(I\) kẻ đường thẳng \(d \, // \, CD\), lấy trên \(d\) điểm \(E, F\) sao cho \(IE = IF = \dfrac{CD}{2}\)
Ta có \(IJ \, \bot \, CD\,\, (gt) \Rightarrow IJ \bot EF\), lại có \(IJ \, \bot \, AB \, \,(gt)\)
\(\Rightarrow IJ \, \bot \, (AEBF)\).
Ta có \(CDFE\) là hình bình hành có \(IJ\) là đường trung bình
\( \Rightarrow CE \, // \, DF \, // \, IJ\)
\( \Rightarrow \left\{ \begin{array}{l}CE \, \bot \, \left( {AEBF} \right) \Rightarrow CE \, \bot \, BE\\DF \, \bot \, \left( {AEBF} \right) \Rightarrow DF \, \bot \, AF\end{array} \right.\)
Ta có: \(\Delta AIF = \Delta BIE(c.g.c)\) suy ra: \(AF=BE\)
Xét \(∆DFA\) và \(∆CEB\) có:
+) \(\widehat E = \widehat F( = {90^0})\)
+) \(AF=BE\)
+) \(DF=CE\)
\(\Rightarrow ∆DFA=∆CEB(c.g.c) \Rightarrow AD = BC\).
Chứng minh tương tự ta được \(BD = AC\).
Loigiaihay.com
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 3a...
Cho tứ diện đều ABCD cạnh a...
Cho hình lập phương ABCD.A'B'C'D' cạnh a...
Giải bài 4 trang 119 SGK Hình học 11. Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, BC= b, CC' = c...
Cho hình lập phương ABCD.A'B'C'D'cạnh a....
Cho tứ diện S.ABC có SA vuông góc với mặt phẳng (ABC). Gọi H, K lần lượt là trực tâm của tam giác ABC và SBC...
Giải bài 1 trang 119 SGK Hình học 11. Trong các mệnh đề sau đây, mệnh đề nào đúng?...
Giải câu hỏi 6 trang 118 SGK Hình học 11. Chứng minh rằng khoảng cách giữa hai đường thẳng chéo nhau là bé nhất ...
Cho tứ diện đều ABCD. Gọi M, N lần lượt là trung điểm của cạnh BC và AD. Chứng minh rằng: MN ⊥ BC và MN ⊥ AD (h.3.42)...
Cho hai mặt phẳng (α) và (β)...
Cho đường thẳng a song song với mặt phẳng (α)....
Cho điểm O và mặt phẳng (α). Chứng minh rằng khoảng cách từ điểm O đến mặt phẳng (α) là bé nhất so với các khoảng cách từ O tới một điểm bất kì của mặt phẳng (α).
Cho điểm O và đường thẳng a. Chứng minh rằng khoảng cách từ điểm O đến đường thẳng a là bé nhất so với các khoảng cách từ O đến một điểm bất kì của đường thẳng a
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: