Bài 4 trang 119 SGK Hình học 11

Bình chọn:
3.4 trên 14 phiếu

Giải bài 4 trang 119 SGK Hình học 11. Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, BC= b, CC' = c...

Đề bài

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB =  a, BC= b, CC' = c\).

a) Tính khoảng cách từ \(B\) đến mặt phẳng \((ACC'A')\).

b) Tính khoảng cách giữa hai đường thẳng \(BB'\) và \(AC'\).

Phương pháp giải - Xem chi tiết

a) Xác định và tính khoảng cách từ điểm B đến \((ACC'A')\) bằng cách kẻ \(BH \bot AC\).

Áp dụng hệ thức lượng trong tam giác vuông để tính khoảng cách vừa xác định được.

b) Xác định mặt phẳng chứa đường thẳng này và song song với đường thẳng kia. Đưa về bài toán xác định khoảng cách từ 1 điểm đến 1 mặt phẳng.

Lời giải chi tiết

a) Trong \((ABCD)\) kẻ \(BH \bot AC\,\,\left( {H \in AC} \right)\,\,\,\,\left( 1 \right)\)

Ta có: \(CC'\bot (ABCD)\Rightarrow CC'\bot BH\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\)

Từ (1) và (2) suy ra \(BH\bot (ACC'A')\).

Áp dụng hệ thức lượng trong tam giác vuông \(ABC\) ta có:

\(\frac{1}{{B{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{B{C^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} = \frac{{{a^2} + {b^2}}}{{{a^2}{b^2}}}\)\( \Rightarrow BH = \frac{{ab}}{{\sqrt {{a^2} + {b^2}} }}\)

b) Ta có: \(AC'\subset (ACC'A') // BB'\)

\(\Rightarrow d(BB', AC') =d(BB';(ACC'A')\)\(= d(B,(ACC'A'))=BH.\)

\( \Rightarrow d\left( {BB';AC'} \right) = \frac{{ab}}{{\sqrt {{a^2} + {b^2}} }}\)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - Bài 5. Khoảng cách

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu