Bài 7 trang 39 Tài liệu dạy – học Toán 9 tập 1

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập a) Rút gọn P.

Đề bài

\(P = \left( {\dfrac{{2\sqrt x }}{{\sqrt x  + 3}} + \dfrac{{\sqrt x }}{{\sqrt x  - 3}} - \dfrac{{3x + 3}}{{x - 9}}} \right):\left( {\dfrac{{2\sqrt x  - 2}}{{\sqrt x  - 3}} - 1} \right)\).

a) Rút gọn P.

b) Tìm x để \(P < \dfrac{1}{2}\).

c) Tìm giá trị nhỏ nhất của P.

Phương pháp giải - Xem chi tiết

a) Tìm điều kiện của x  để biểu thức P xác định.

+) Quy đồng mẫu các phân thức sau đó biến đổi để rút gọn biểu thức.

b) Với biểu thức đã rút gọn của P, giải bất phương trình \(P < \dfrac{1}{2}.\)

+) Kết hợp với điều kiện của x để kết luận.

c) Biến đổi hoặc đánh giá để tìm GTNN.

Lời giải chi tiết

a) Điều kiện: \(\left\{ \begin{array}{l}x \ge 0\\\sqrt x  - 3 \ne 0\\x - 9 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\x \ne 9\end{array} \right..\)

\(\begin{array}{l}P = \left( {\dfrac{{2\sqrt x }}{{\sqrt x  + 3}} + \dfrac{{\sqrt x }}{{\sqrt x  - 3}} - \dfrac{{3x + 3}}{{x - 9}}} \right):\left( {\dfrac{{2\sqrt x  - 2}}{{\sqrt x  - 3}} - 1} \right)\\ = \dfrac{{2\sqrt x \left( {\sqrt x  - 3} \right) + \sqrt x \left( {\sqrt x  + 3} \right) - 3x - 3}}{{\left( {\sqrt x  - 3} \right)\left( {\sqrt x  + 3} \right)}}:\dfrac{{2\sqrt x  - 2 - \sqrt x  + 3}}{{\sqrt x  - 3}}\\ = \dfrac{{2x - 6\sqrt x  + x + 3\sqrt x  - 3x - 3}}{{\left( {\sqrt x  - 3} \right)\left( {\sqrt x  + 3} \right)}}.\dfrac{{\sqrt x  - 3}}{{\sqrt x  + 1}}\\ = \dfrac{{ - 3\sqrt x  - 3}}{{\sqrt x  + 3}}.\dfrac{1}{{\sqrt x  + 1}}\\ =  - \dfrac{{3\left( {\sqrt x  + 1} \right)}}{{\left( {\sqrt x  + 3} \right)\left( {\sqrt x  + 1} \right)}} \\=  - \dfrac{3}{{\sqrt x  + 3}}.\end{array}\)

b) Điều kiện:\(x \ge 0;\;\;x \ne 9.\)

\(\begin{array}{l}P < \dfrac{1}{2} \Leftrightarrow  - \dfrac{3}{{\sqrt x  + 3}} < \dfrac{1}{2}\\ \Leftrightarrow \dfrac{3}{{\sqrt x  + 3}} + \dfrac{1}{2} > 0\\ \Leftrightarrow \dfrac{{6 + \sqrt x  + 3}}{{2\left( {\sqrt x  + 3} \right)}} > 0\\ \Leftrightarrow \dfrac{{\sqrt x  + 9}}{{2\left( {\sqrt x  + 3} \right)}} > 0\end{array}\)

Ta thấy với mọi \(x \ge 0\) thì \(\dfrac{{\sqrt x  + 9}}{{2\left( {\sqrt x  + 3} \right)}} > 0.\)

Vậy với \(x \ge 0,\;\;x \ne 9\) thì \(P < \dfrac{1}{2}.\)

c) Điều kiện:\(x \ge 0;\;\;x \ne 9.\)

Ta có: \(P =  - \dfrac{3}{{\sqrt x  + 3}}\)

\(\sqrt x  \ge 0 \Rightarrow \sqrt x  + 3 \ge 3\)\(\; \Rightarrow \dfrac{1}{{\sqrt x  + 3}} \le \dfrac{1}{3}\)\(\; \Rightarrow \dfrac{{ - 3}}{{\sqrt x  + 3}} \ge  - \dfrac{3}{3} =  - 1.\)

Dấu “=” xảy ra \( \Leftrightarrow \sqrt x  = 0 \Leftrightarrow x = 0.\)

Vậy \(P\) đạt giá trị nhỏ nhất bằng \( - 1\) khi \(x = 0.\)

 Loigiaihay.com

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com