Bài 7 trang 116 Sách bài tập Hình học lớp 12 Nâng cao>
Chứng minh bốn điểm
Đề bài
Chứng minh bốn điểm A(1;-1;1), B(1;3;1), C(4;3;1), D(4;-1;1) là các đỉnh của một hình chữ nhật.
Tính độ dài các đường chéo, xác định tọa độ của tâm hình chữ nhật đó. Tính côsin của góc giữa hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {BD} \).
Lời giải chi tiết
Ta có \(\overrightarrow {AB} = \overrightarrow {DC} = (0;4;0),\) vậy ABCD là hình bình hành.
Lại có \(\overrightarrow {AB} .\overrightarrow {AD} = 0 \Rightarrow \) \(\widehat {BAD} = \) 900.
Vậy ABCD là hình chữ nhật.
Vì \(\overrightarrow {AC} \)=(3;4;0) nên độ dài đường chéo của hình chữ nhật là
\(AC = \left| {\overrightarrow {AC} } \right| = BD = 5.\)
Tâm O của hình chữ nhật là trung điểm của đường chéo AC nên \(O = \left( {{5 \over 2};1;1} \right).\)
\(\cos \left( {\overrightarrow {AC} ,\overrightarrow {BD} } \right) = {{9 - 16} \over {\sqrt {25} .\sqrt {25} }} = {{ - 7} \over {25}}.\)
Loigiaihay.com
- Bài 8 trang 117 Sách bài tập Hình học lớp 12 Nâng cao
- Bài 9 trang 117 Sách bài tập Hình học lớp 12 Nâng cao
- Bài 10 trang 117 Sách bài tập Hình học lớp 12 Nâng cao
- Bài 11 trang 117 Sách bài tập hình học lớp 12 nâng cao
- Bài 12 trang 117 Sách bài tập Hình học lớp 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao