Bài 1 trang 120 Tài liệu dạy – học Toán 9 tập 1


Giải bài tập Cho tam giác ABC. Vẽ đường tròn (O) đi qua B và C và tâm đường tròn nằm trên AC. Khi nào

Đề bài

Cho tam giác ABC. Vẽ đường tròn (O) đi qua B và C và tâm đường tròn nằm trên AC. Khi nào thì tâm đường tròn (O) trùng với điểm A?

Phương pháp giải - Xem chi tiết

+) Chứng minh điểm \(O\) thuộc trung trực của \(BC\), dựa vào giả thiết suy ra cách dựng điểm \(O\).

+) Chứng minh khi \(O \equiv A\) thì \(A\) thuộc trung trực của \(BC\), từ đó suy ra tính chất của tam giác \(ABC\).

Lời giải chi tiết

 

Do \(B,C \in \left( O \right) \Rightarrow OB = OC \Rightarrow \) Điểm \(O\) thuộc trung trực của \(BC\).

Gọi \(d\) là đường trung trực của đoạn thẳng \(BC \Rightarrow O \in d\).

Lại có \(O \in AC\,\,\left( {gt} \right) \Rightarrow O = d \cap AC\).

Khi \(O \equiv A \Rightarrow A \in d \Rightarrow AB = AC\), khi đó tam giác \(ABC\) trở thành tam giác cân tại \(A\).

Vậy điều kiện để \(O \equiv A\) là tam giác \(ABC\) là tam giác cân tại \(A\).

 Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài