Thử tài bạn 6 trang 15 Tài liệu dạy – học Toán 9 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Hai hệ phương trình

Đề bài

Hai hệ phương trình \(\left\{ \begin{array}{l}3x + y = 1\\6x + 2y = 0\end{array} \right.\) và \(\left\{ \begin{array}{l}x - y = 1\\2x - 2y = 4\end{array} \right.\)  có tương đương với nhau không?

Lời giải chi tiết

Đường thẳng \(3x + y = 1 \Leftrightarrow y =  - 3x + 1\) và đường thẳng \(6x + 2y = 0 \Leftrightarrow 2y =  - 6x \Leftrightarrow y =  - 3x\)

Ta có: Đường thẳng \(y =  - 3x + 1\) song song với đường thẳng \(y =  - 3x\) nên chúng không cắt nhau, do đó hệ phương trình \(\left\{ \begin{array}{l}3x + y = 1\\6x + 2y = 0\end{array} \right.\) vô nghiệm.

Tương tự ta có:

Đường thẳng \(x - y = 1 \Leftrightarrow y = x - 1\) và đường thẳng \(2x - 2y = 4 \Leftrightarrow x - y = 2 \Leftrightarrow y = x - 2\) song song với nhau, nên chúng không cắt nhau, do đó hệ \(\left\{ \begin{array}{l}x - y = 1\\2x - 2y = 4\end{array} \right.\) vô nghiệm.

Hai hệ phương trình trên có cùng tập nghiệm (tập rỗng), do đó hai hệ phương trình đó tương đương.

 Loigiaihay.com

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Gửi văn hay nhận ngay phần thưởng