
Đề bài
Cho đường tròn (O), bán kính OM = 8 cm, điểm I thuộc đoạn OM sao cho IO = 2IM. Từ I kẻ đường thẳng vuông góc với OM cắt đường tròn tại A và B. Tính AB.
Lời giải chi tiết
Ta có \(OI = 2IM \)
\(\Rightarrow OI = \dfrac{2}{3}OM = \dfrac{2}{3}.8 = \dfrac{{16}}{3}\,\,\left( {cm} \right)\)
Áp dụng định lí Pytago trong tam giác vuông OAI có :
\(AI = \sqrt {O{A^2} - O{I^2}} = \sqrt {{8^2} - {{\left( {\dfrac{{16}}{3}} \right)}^2}} \)\(\,= \sqrt {\dfrac{{320}}{9}} = \dfrac{{8\sqrt 5 }}{3}\) (cm)
Lại có \(OM \bot AB \Rightarrow \) I là trung điểm của \(AB\) (quan hệ vuông góc giữa đường kính và dây cung)
\( \Rightarrow AB = 2AI = 2.\dfrac{{8\sqrt 5 }}{3} = \dfrac{{16\sqrt 5 }}{3}\,\,\left( {cm} \right)\).
Loigiaihay.com
Các bài liên quan: - 2. Quan hệ vuông góc giữa đường kính và dây
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT:
Copyright 2020 - 2021 - Loigiaihay.com