Lý thuyết Tập hợp các số nguyên Toán 6 KNTT với cuộc sống


Lý thuyết Tập hợp các số nguyên Toán 6 KNTT với cuộc sống ngắn gọn, đầy đủ, dễ hiểu

 

1. Làm quen với số nguyên âm

Số nguyên dương: \(1;2;3;4;...\) (Số tự nhiên khác 0)

Số nguyên âm: \(- 1; - 2; - 3; - 4;...\)(Ta thêm dấu “-” vào đằng trước các số nguyên dương)

- Tập hợp: \(\left\{ {...; - 3; - 2; - 1;0;1;2;3;...} \right\}\) gồm các số nguyên âm, số \(0\) và các số nguyên dương là tập hợp các số nguyên. Kí hiệu là \(\mathbb{Z} = \left\{ {...; - 3; - 2; - 1;0;1;2;3;...} \right\}\)

Chú ý:

- Số \(0\) không phải là số nguyên dương cũng không phải số nguyên âm.

- Đôi khi ta còn viết thêm dấu “+” ngay trước một số nguyên dương. Chẳng hạn \( + 5\) (đọc là “dương năm”)

Khi nào người ta dùng số âm?

- Trong đời sống hàng ngày người ta dùng các số mang dấu "-" và dấu "+" để chỉ các đại lượng có thể xét theo hai chiều khác nhau.

Số dương biểu thị

Số âm biểu thị

Nhiệt độ trên \({0^0}C\)

Nhiệt độ dưới \({0^0}C\)

Độ cao trên mực nước biển

Độ cao dưới mực nước biển

Số tiền hiện

Số tiền còn nợ

Số tiền lãi

Số tiền lỗ

Độ viễn thị

Độ cận thị

Ví dụ:

+) Số \( - 1\) đọc là “âm một”.

+) Số +2 đọc là “dương hai”

+) Một người thợ lặn lặn xuống độ sâu 10 mét tức là độ cao hiện tại của người thợ lặn là -10m so với mực nước biển.

2. Thứ tự trên tập hợp số nguyên

a) Trục số

 

+ Trên trục số: Điểm \(0\)được gọi là điểm gốc của trục số. Chiều từ trái sang phải gọi là chiều dương (thường được đánh dấu bằng mũi tên), chiều từ phải sang trái gọi là chiều âm của trục số.

+ Điểm biểu diễn số nguyên \(a\) trên trục số gọi là điểm \(a.\)

+) Cho số nguyên \(a\) và \(b\). Trên trục số, nếu điểm \(a\) nằm bên trái điểm \(b\) thì số \(a\) nhỏ hơn số \(b\), kí hiệu \(a < b\)

Ví dụ:

Số 2 trên trục số được gọi là điểm 2.

Số \( - 9\) trên trục số được gọi là điểm \( - 9\)

Ví dụ: Cho trục số như hình vẽ.

 

Ta thấy điểm biểu diễ số \( - 5\) nằm bên trái điểm biểu diễn số \( - 3\) nên \( - 5 <  - 3.\)

b) So sánh hai số nguyên

- Mọi số nguyên âm đều nhỏ hơn 0.

- Mọi số nguyên âm đều nhỏ hơn số nguyên dương.

- Mọi số nguyên dương đều lớn hơn 0.

- Nếu \(a,b\) là hai số nguyên dương và \(a > b\) thì \( - a <  - b\) (Thêm dấu “-” thì đổi dấu “>” thành dấu “<”)

- Nếu \(a,b\) là hai số nguyên dương và \(a < b\) thì \( - a >  - b\)

- Kí hiệu \(a \le b\) có nghĩa là “\(a < b\) hoặc \(a = b\)”

- Kí hiệu \(a \ge b\) có nghĩa là “\(a > b\) hoặc \(a = b\)”

Chú ý: 

Để so sánh 2 số nguyên âm, ta làm 2 bước sau:

Bước 1: Bỏ dấu "-" trước cả 2 số âm 

Bước 2: Trong 2 số nguyên dương nhận được, số nào nhỏ hơn thì số nguyên âm ban đầu( trước khi bỏ dấu "-" lớn hơn

Ví dụ:

5 là số nguyên dương và \( - 25\) là số nguyên âm nên \(5 >  - 25\)

Vì \(15 > 3\) nên \( - 15 <  - 3\)


Bình chọn:
4 trên 5 phiếu

Các bài liên quan: - Bài 13. Tập hợp các số nguyên


Hỏi bài