Bài 92 trang 20 SBT toán 9 tập 1


Giải bài 92 trang 20 sách bài tập toán 9. So sánh (không dùng bảng tính hay máy tính bỏ túi)...33...3 căn bậc 3 (3333333)...

Lựa chọn câu để xem lời giải nhanh hơn

So sánh (không dùng bảng tính hay máy tính bỏ túi):

LG câu a

\(2\root 3 \of 3 \) và \(\root 3 \of {23} \)

Phương pháp giải:

Áp dụng: 

\({\left( {\sqrt[3]{a}} \right)^3} = a\); \(\sqrt[3]{{{a^3}}} = a\)

\(\sqrt[3]{{ab}} = \sqrt[3]{a}.\sqrt[3]{b};\sqrt[3]{{\dfrac{a}{b}}} = \dfrac{{\sqrt[3]{a}}}{{\sqrt[3]{b}}}(b \ne 0)\)  

\(a < b \Leftrightarrow \sqrt[3]{a} < \sqrt[3]{b}\) 

Lời giải chi tiết:

Ta có: 

\(2\root 3 \of 3  = \root 3 \of {{2^3}} .\root 3 \of 3  = \root 3 \of {8.3}  = \root 3 \of {24} \)

Vì \(23 < 24\) nên \(\root 3 \of {23}  < \root 3 \of {24} \)

Vậy \(2\root 3 \of 3 \) > \(\root 3 \of {23} \)

LG câu b

\(33\) và \(3\root 3 \of {1333} \)  

Phương pháp giải:

Áp dụng: 

\({\left( {\sqrt[3]{a}} \right)^3} = a\); \(\sqrt[3]{{{a^3}}} = a\)

\(\sqrt[3]{{ab}} = \sqrt[3]{a}.\sqrt[3]{b};\sqrt[3]{{\dfrac{a}{b}}} = \dfrac{{\sqrt[3]{a}}}{{\sqrt[3]{b}}}(b \ne 0)\)  

\(a < b \Leftrightarrow \sqrt[3]{a} < \sqrt[3]{b}\) 

Lời giải chi tiết:

Ta có: \(33 =3. 11\) và \(3\root 3 \of {1333} \)

So sánh: \(11\) và \(\root 3 \of {1333} \)

Ta có: \({11^3} = 1331\)

Vì \(1331 < 1333\) nên \(\root 3 \of {1331}  < \root 3 \of {1333} \)

Suy ra: \(11 < \root 3 \of {1333} \) hay \(33 < 3\root 3 \of {1333} \)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4 trên 6 phiếu

Các bài liên quan: - Bài 9. Căn bậc ba

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài