Bài 83 trang 19 SBT toán 9 tập 1


Giải bài 83 trang 19 sách bài tập toán 9. Chứng tỏ giá trị các biểu thức sau là số hữu tỉ...

Lựa chọn câu để xem lời giải nhanh hơn

Chứng tỏ giá trị các biểu thức sau là số hữu tỉ: 

LG câu a

\( \displaystyle{2 \over {\sqrt 7  - 5}} - {2 \over {\sqrt 7  + 5}}\);

Phương pháp giải:

Áp dụng:

Với \(B \ge 0;\,B \ne C^2,\) ta có: \(\dfrac{A}{{\sqrt B  \pm C}} = \dfrac{{A(\sqrt B  \mp C)}}{{B - {C^2}}}\)

Lưu ý: Số hữu tỉ là số có dạng \(\dfrac{a}{b}\) trong đó \(a\); \(b\) là các số nguyên và \(b \ne 0\).

Lời giải chi tiết:

Ta có: 

\(\begin{array}{l}
\dfrac{2}{{\sqrt 7 - 5}} - \dfrac{2}{{\sqrt 7 + 5}}\\
= \dfrac{{2(\sqrt 7 + 5) - 2(\sqrt 7 - 5)}}{{(\sqrt 7 + 5)\left( {\sqrt 7 - 5} \right)}}\\
= \dfrac{{2\sqrt 7 + 10 - 2\sqrt 7 + 10}}{{7 - 25}}\\
= \dfrac{{20}}{{ - 18}} = - \dfrac{{10}}{9}
\end{array}\) 

Vậy \(\dfrac{2}{{\sqrt 7  - 5}} - \dfrac{2}{{\sqrt 7  + 5}} =  - \dfrac{{10}}{9}\) là số hữu tỉ

LG câu b

\( \displaystyle\,{{\sqrt 7  + 5} \over {\sqrt 7  - 5}} + {{\sqrt 7  - 5} \over {\sqrt 7  + 5}}.\) 

Phương pháp giải:

Áp dụng:

Với \(B,C \ge 0;\,B \ne C,\) ta có: \(\dfrac{A}{{\sqrt B  \pm \sqrt C }} = \dfrac{{A(\sqrt B  \mp \sqrt C )}}{{B - C}}\)   

Lưu ý: Số hữu tỉ là số có dạng \(\dfrac{a}{b}\) trong đó \(a\); \(b\) là các số nguyên và \(b \ne 0\)

Lời giải chi tiết:

\(\begin{array}{l}
\dfrac{{\sqrt 7 + \sqrt 5 }}{{\sqrt 7 - \sqrt 5 }} + \dfrac{{\sqrt 7 - \sqrt 5 }}{{\sqrt 7 + \sqrt 5 }}\\
= \dfrac{{{{(\sqrt 7 + \sqrt 5 )}^2} + {{(\sqrt 7 - \sqrt 5 )}^2}}}{{(\sqrt 7 + \sqrt 5 )\left( {\sqrt 7 - \sqrt 5 } \right)}}\\
= \dfrac{{7 + 2\sqrt {35} + 5 + 7 - 2\sqrt {35} + 5}}{{7 - 5}}\\
= \dfrac{{24}}{2} = 12
\end{array}\) 

Vậy  \( \displaystyle\,{{\sqrt 7  + 5} \over {\sqrt 7  - 5}} + {{\sqrt 7  - 5} \over {\sqrt 7  + 5}}=12\)  là số hữu tỉ.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.5 trên 27 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài