Bài 8 trang 51 SBT toán 8 tập 2


Giải bài 8 trang 51 sách bài tập toán 8. Dựa vào tính chất liên hệ giữa thứ tự và phép cộng, hãy chứng tỏ rằng : a) Nếu m > n thì m – n > 0 ; b) Nếu m – n > 0 thì m > n.

Lựa chọn câu để xem lời giải nhanh hơn

Dựa vào tính chất liên hệ giữa thứ tự và phép cộng, hãy chứng tỏ rằng:

LG a

Nếu \(m > n\) thì \(m – n > 0;\)

Phương pháp giải:

Áp dụng tính chất: Khi cộng cùng một số vào hai vế của một bất đẳng thức ta được một bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.

Giải chi tiết:

Ta có: \(m > n ⇒ m + (-n) > n + (-n)\)

    \(⇒ m – n > n – n ⇒ m – n > 0\)

    Vậy nếu \(m > n\) thì \(m – n > 0.\)

LG b

Nếu \(m – n > 0\) thì \(m > n.\)

Phương pháp giải:

Áp dụng tính chất: Khi cộng cùng một số vào hai vế của một bất đẳng thức ta được một bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.

Giải chi tiết:

Ta có: \(m – n > 0 ⇒ m – n + n > 0 + n\) \(⇒ m > n\)

    Vậy nếu \(m – n > 0\) thì \(m > n.\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài