Bài 58 trang 149 SBT toán 8 tập 2


Đề bài

Tính diện tích toàn phần của hình chóp tam giác đều theo các kích thước cho ở hình 145.

Phương pháp giải - Xem chi tiết

Sử dụng:

- Hình chóp đều là hình chóp có mặt đáy là một đa giác đều, có mặt bên là những tam giác cân bằng nhau có chung đỉnh.

- Định lí Pytago trong tam giác vuông: Bình phương của cạnh huyền bằng tổng các bình phương của các cạnh góc vuông.

- Diện tích toàn phần của hình chóp là tổng diện tích của tất cả các mặt của hình chóp.

Lời giải chi tiết

Chóp tam giác đều có cạnh đáy bằng cạnh bên nên mặt đáy và các mặt bên là các tam giác đều bằng nhau có cạnh là \(a.\)

Gọi \(I\) là trung điểm của \(AB\). Vì tam giác \(ABC\) đều nên \(CI \bot AB.\)

Ta có: \(AI=AB:2=\dfrac{a}{2}\) 

Áp dụng định lí Py-ta-go vào tam giác vuông \(CIA\), ta có:

\(A{C^2} = C{I^2} + A{I^2}\)

\( \Rightarrow C{I^2} = A{C^2} - A{I^2} \)

\( \Rightarrow CI ^2= {a^2} - {\left( {\dfrac{a}{2}} \right)^2} = \dfrac{{3{a^2}}}{4}\)

\( \Rightarrow CI = \dfrac{{a\sqrt 3 }}{2}\)

Ta có: \(\displaystyle{S_{ABC}} ={1 \over 2}.CI.AB= {1 \over 2}.a.{{a\sqrt 3 } \over 2}\)\( \displaystyle = {{{a^2}\sqrt 3 } \over 4}\) (đơn vị diện tích).

Vậy diện tích toàn phần của hình chóp tam giác đều đã cho là:

\(\displaystyle {S_{TP}} = 4.S_{ABC}=4.{{{a^2}\sqrt 3 } \over 4} = {a^2}\sqrt 3 \) (đơn vị diện tích).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu
  • Bài 59 trang 150 SBT toán 8 tập 2

    Giải bài 59 trang 150 sách bài tập toán 8. Cho hình chóp tứ giác đều (h.146). Xem hình và điền số thích hợp vào các ô còn trống ở bảng sau...

  • Bài 60 trang 150 SBT toán 8 tập 2

    Giải bài 60 trang 150 sách bài tập toán 8. Một hình chóp tứ giác đều có độ dài cạnh đáy là 6cm, chiều cao là 4cm thì diện tích xung quanh là ...

  • Bài 61 trang 150 SBT toán 8 tập 2

    Giải bài 61 trang 150 sách bài tập toán 8. Hình chóp đều S.ABC có cạnh đáy a = 12cm, chiều cao h = 8cm. Hãy tính diện tích xung quanh của hình chóp đó.

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài