Bài 57 trang 149 SBT toán 8 tập 2


Đề bài

Hình chóp lục giác đều \(S.ABCDEH\) có \(AB = 6cm,\) cạnh bên \(SA = 10cm.\) Vậy chiều cao hình chóp là:

A. \(6cm\)                                   B. \(8cm\)

C. \(\sqrt {91} cm\)                             D. \(\sqrt {136} cm\)

Hãy chọn kết quả đúng.

Phương pháp giải - Xem chi tiết

Sử dụng:

- Hình chóp đều là hình chóp có mặt đáy là một đa giác đều, có mặt bên là những tam giác cân bằng nhau có chung đỉnh.

- Định lí Pytago trong tam giác vuông: Bình phương của cạnh huyền bằng tổng các bình phương của các cạnh góc vuông.

Lời giải chi tiết

Gọi \(SO\) là đường cao của hình chóp.

Vì đáy \(ABCDEH\) là lục giác đều có tâm \(O\) nên \(∆ AOB\) là tam giác đều có cạnh \(AB = 6cm\) suy ra \(OA = 6\;cm\).

Áp dụng định lí Py-ta-go vào tam giác vuông \(SOA\), ta có:

\(S{A^2} = SO{^2} + O{A^2}\)

\(\Rightarrow SO = \sqrt {S{A^2} - O{A^2}}  = \sqrt {{{10}^2} - {6^2}} \)\(\, = 8\,(cm).\)

Chọn B.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu
  • Bài 56 trang 149 SBT toán 8 tập 2

    Giải bài 56 trang 149 sách bài tập toán 8. Hình chóp tứ giác đều S.ABCD (h.144) có các mặt bên là những tam giác đều, AB = 8m, O là trung điểm của AC...

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.