Bài 46 trang 26 SBT toán 7 tập 2


Giải bài 46 trang 26 sách bài tập toán 7. Chứng tỏ rằng nếu a + b + c = 0 thì x = 1 là một nghiệm của đa thức.

Đề bài

Chứng tỏ rằng nếu \(a + b + c = 0\) thì \(x = 1\) là một nghiệm của đa thức \(a{x^2} + bx + c\). 

Phương pháp giải - Xem chi tiết

Sử dụng định nghĩa: Nếu tại \(x = a\) đa thức \(P(x)\) có giá trị bằng \(0\) thì ta nói \(a\) là một nghiệm của đa thức \(P(x)\). 

Lời giải chi tiết

Thay \(x = 1\) vào đa thức \(a{x^2} + bx + c,\) ta được:

\(a{.1^2} + b.1 + c = a + b + c=0\) (vì \(a + b + c = 0\)) 

Vậy \(x =1\) là nghiệm của đa thức \(a{x^2} + bx + c\) khi  \(a+ b + c = 0\)

 Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.4 trên 13 phiếu

>> Học trực tuyến lớp 7 trên Tuyensinh247.com cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài