Bài 42 trang 11 SBT toán 8 tập 1>
Giải bài 42 trang 11 sách bài tập toán 8. Tìm số tự nhiên n để mỗi phép chia sau là phép chia hết:...
Tìm số tự nhiên \(n\) để mỗi phép chia sau là phép chia hết:
LG a
\(\) \({x^4}:{x^n}\)
Phương pháp giải:
Sử dụng nhận xét: Đơn thức \(A\) chia hết cho đơn thức \(B\) khi mỗi biến của \(B\) đều là biến của \(A\) với số mũ nhỏ hơn hoặc bằng số mũ của nó trong \(A\).
Lời giải chi tiết:
\(\) \({x^4}:{x^n}\) \( = {x^{4 - n}}\) là phép chia hết nên \(4 - n \ge 0 \Rightarrow n \le 4\)
Mà \(n\) là số tự nhiên \( \Rightarrow n \in \left\{ {0;1;2;3;4} \right\}\)
LG b
\(\) \({x^n}:{x^3}\)
Phương pháp giải:
Sử dụng nhận xét: Đơn thức \(A\) chia hết cho đơn thức \(B\) khi mỗi biến của \(B\) đều là biến của \(A\) với số mũ nhỏ hơn hoặc bằng số mũ của nó trong \(A\).
Lời giải chi tiết:
\(\) \({x^n}:{x^3}\) \( = {x^{n - 3}}\) là phép chia hết nên \(n - 3 \ge 0 \Rightarrow n \ge 3\)
Mà \(n\) là số tự nhiên nên \(n\in \{3;4;5;6;...\}\)
LG c
\(\) \(5{x^n}{y^3}:4{x^2}{y^2}\)
Phương pháp giải:
Sử dụng nhận xét: Đơn thức \(A\) chia hết cho đơn thức \(B\) khi mỗi biến của \(B\) đều là biến của \(A\) với số mũ nhỏ hơn hoặc bằng số mũ của nó trong \(A\).
Lời giải chi tiết:
\(\) \(5{x^n}{y^3}:4{x^2}{y^2}\)\( = \displaystyle{5 \over 4}\left( {{x^n}:{x^2}} \right)\left( {{y^3}:{y^2}} \right) = {5 \over 4}{x^{n - 2}}y\) là phép chia hết nên \(n - 2 \ge 0 \Rightarrow n \ge 2\)
Mà \(n\) là số tự nhiên nên \(n\in \{2;3;4;5;...\}\)
LG d
\(\) \({x^n}{y^{n + 1}}:{x^2}{y^5}\)
Phương pháp giải:
Sử dụng nhận xét: Đơn thức \(A\) chia hết cho đơn thức \(B\) khi mỗi biến của \(B\) đều là biến của \(A\) với số mũ nhỏ hơn hoặc bằng số mũ của nó trong \(A\).
Lời giải chi tiết:
\(\) \({x^n}{y^{n + 1}}:{x^2}{y^5}\) \( = \left( {{x^n}:{x^2}} \right)\left( {{y^{n + 1}}:{y^5}} \right) \)\(= {x^{n - 2}}.{y^{n +1-5}}= {x^{n - 2}}.{y^{n - 4}}\) là phép chia hết nên:
\(\left\{ \begin{array}{l} n-4 \ge 0\\ n-2 \ge 0 \end{array} \right.\) \(\Rightarrow \left\{ \begin{array}{l} n \ge 4\\ n\ge 2\end{array} \right.\) \(\Rightarrow n\ge 4\)
Mà \(n\) là số tự nhiên nên \(n\in \{4;5;6;7;...\}\)
Loigiaihay.com
- Bài 43 trang 11 SBT toán 8 tập 1
- Bài 10.1 phần bài tập bổ sung trang 12 SBT toán 8 tập 1
- Bài 10.2 phần bài tập bổ sung trang 12 SBT toán 8 tập 1
- Bài 41 trang 11 SBT toán 8 tập 1
- Bài 40 trang 11 SBT toán 8 tập 1
>> Xem thêm