Bài 10.1 phần bài tập bổ sung trang 12 SBT toán 8 tập 1


Giải bài 10.1 phần bài tập bổ sung trang 12 sách bài tập toán 8. Làm tính chia:...

Lựa chọn câu để xem lời giải nhanh hơn

Làm tính chia:

LG a

\(\) \({\left( {\displaystyle{5 \over 7}{x^2}y} \right)^3}:{\left( {\displaystyle{1 \over 7}xy} \right)^3}\)

Phương pháp giải:

Muốn chia đơn thức \(A\) cho đơn thức \(B\) (trường hợp \(A\) chia hết cho \(B\)) ta làm như sau:

+) Chia hệ số của đơn thức \(A\) cho hệ số của đơn thức \(B.\)

+) Chia lũy thừa của từng biến trong \(A\) cho lũy thừa của từng biến đó trong \(B\).

+) Nhân các kết quả vừa tìm được với nhau.

Lời giải chi tiết:

\(\) \({\left( {\displaystyle{5 \over 7}{x^2}y} \right)^3}:{\left( {\displaystyle{1 \over 7}xy} \right)^3}\) \( = {\left( {\displaystyle{5 \over 7}{x^2}y:{1 \over 7}xy} \right)^3} = {\left( {5x} \right)^3} = 125{x^3}\)

LG b

\(\) \({\left( { - {x^3}{y^2}z} \right)^4}:{\left( { - x{y^2}z} \right)^3}\)

Phương pháp giải:

Muốn chia đơn thức \(A\) cho đơn thức \(B\) (trường hợp \(A\) chia hết cho \(B\)) ta làm như sau:

+) Chia hệ số của đơn thức \(A\) cho hệ số của đơn thức \(B.\)

+) Chia lũy thừa của từng biến trong \(A\) cho lũy thừa của từng biến đó trong \(B\).

+) Nhân các kết quả vừa tìm được với nhau.

Lời giải chi tiết:

\(\) \({\left( { - {x^3}{y^2}z} \right)^4}:{\left( { - x{y^2}z} \right)^3}\) \( = \left( {{x^{3.4}}{y^{2.4}}{z^{4}}} \right):\left( { - {x^{1.3}}{y^{2.3}}{z^{3}}} \right)\)\( = {x^{12}}{y^8}{z^4}:\left( { - {x^3}{y^6}{z^3}} \right) =  - {x^9}{y^2}z\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.3 trên 11 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài