Bài 3.52 trang 167 SBT hình học 10


Đề bài

Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD có điểm I(6;2) là giao điểm của hai đường chéo AC và BD. Điểm M(1;5) thuộc đường thẳng AB và trung điểm E của cạnh CD thuộc đường thẳng \(\Delta :x + y - 5 = 0\). Viết phương trình đường thẳng AB.

Phương pháp giải - Xem chi tiết

- Gọi N là điểm đối xứng với M qua I.

- Tham số hóa tọa độ điểm \(E\), sử dụng chú ý \(IE \bot NE\) tìm tọa độ \(E\).

- Viết phương trình \(AB\) và kết luận.

Lời giải chi tiết

Gọi N là điểm đối xứng với M qua I, suy ra N(11 ; -1) và điểm N thuộc đường thẳng CD.

\(E \in \Delta  \Rightarrow E(x;5 - x)\,;\) \(\overrightarrow {IE}  = (x - 6;3 - x)\) và \(\overrightarrow {NE}  = (x - 11;6 - x)\).

 E là trung điểm của CD \( \Rightarrow IE \bot EN.\)

\(\overrightarrow {IE} .\overrightarrow {NE}  = 0\) \( \Leftrightarrow \left( {x - 6} \right)\left( {x - 11} \right) + \left( {3 - x} \right)\left( {6 - x} \right) = 0\) \( \Leftrightarrow x = 6\)  hoặc \(x = 7.\)

Với \(x = 6 \Rightarrow \overrightarrow {IE}  = (0;3),\)

Phương trình \(AB:y - 5 = 0.\)

Với \(x = 7 \Rightarrow \overrightarrow {IE}  = \left( {1; - 4} \right),\)

Phương trình \(AB:x - 4y + 19 = 0\). 

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài