Bài 3.50 trang 166 SBT hình học 10


Giải bài 3.50 trang 166 sách bài tập hình học 10. Cho đường tròn (C) ...

Lựa chọn câu để xem lời giải nhanh hơn

Cho đường tròn  (C) : \({x^2} + {y^2} - 2x - 6y + 6 = 0\) và điểm M(2;4).

LG a

Chứng minh rằng điểm M nằm trong  (C) ;

Phương pháp giải:

Điểm \(M\) nằm trong \(\left( C \right)\) \( \Leftrightarrow IM < R\).

Giải chi tiết:

(C) : \({x^2} + {y^2} - 2x - 6y + 6 = 0\)\( \Rightarrow \) (C) có tâm \(I\left( {1;3} \right)\) và bán kính \(R = 2\).

\(IM = \sqrt 2  < R \Rightarrow \)M nằm trong \((C)\).

LG b

Viết phương trình đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm A, B sao cho M là trung điểm của đoạn AB.

Phương pháp giải:

Đường thẳng d cắt đường tròn \((C)\) tại hai điểm A, B sao cho M là trung điểm của đoạn thẳng\(AB\) \( \Rightarrow d \bot IM\) tại M.

Giải chi tiết:

Đường thẳng d cắt đường tròn \((C)\)tại hai điểm A, B sao cho M là trung điểm của đoạn thẳng\(AB \Rightarrow d \bot IM\)tại M.

Phương trình đường thẳng \(d\) đi qua \(M\left( {2;4} \right)\) và nhận \(\overrightarrow {IM}  = \left( {1;1} \right)\) làm VTPT

\( \Rightarrow d:1.(x - 2) + 1.(y - 4) = 0\)

\( \Rightarrow d:x + y - 6 = 0.\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài