Bài 25 trang 104 SBT toán 9 tập 2


Giải bài 25 trang 104 sách bài tập toán 9. Từ một điểm M cố định ở bên ngoài đường tròn tâm O ta kẻ một tiếp tuyến MT và một cát tuyến MAB của đường tròn đó...

Đề bài

Từ một điểm \(M\) cố định ở bên ngoài đường tròn tâm \(O\) ta kẻ một tiếp tuyến \(MT\) và một cát tuyến \(MAB\) của đường tròn đó.

\(a)\) Chứng minh rằng ta luôn có \(MT^2= MA.MB\) và tích này không phụ thuộc vị trí của cát tuyến \(MAB.\)

\(b)\) Ở hình \(2\) khi cho \(MB =  20 cm,\)\( MB  = 50 cm,\) tính bán kính đường tròn.

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức:

+) Trong một đường tròn, góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung thì bằng nhau.

+) Hai tam giác đồng dạng thì ta có các cạnh tương ứng tỉ lệ.

Lời giải chi tiết

\(a)\) 

 

Xét \(∆MTA\) và \(∆MTB,\) có: 

+) \(\widehat M\) chung

+) \(\widehat {MTA} = \widehat {TBA}\) (hệ quả góc giữa tia tiếp tuyến và dây), hay \(\widehat {MTA} = \widehat {TBM}\)

Suy ra: \(∆MAT\) đồng dạng \(∆MTB\)

\(\displaystyle  \Rightarrow {{MT} \over {MA}} = {{MB} \over {MT}}\)

\( \Rightarrow M{T^2} = MA.MB\)

Vì \(MA.MB=MT^2\) mà \(MT\) là tiếp tuyến của đường tròn \((O)\) nên tích \(MA.MB\) không phụ thuộc vị trí của cát tuyến \(MAB.\)

\(b)\)

Gọi bán kính \((O)\) là \(R\)

\(MB = MA + AB = MA + 2R\)

\( \Rightarrow MA = MB - 2R\)

\(M{T^2} = MA.MB\) (chứng minh trên)

\( \Rightarrow M{T^2} = \left( {MB - 2R} \right)MB\)

\( \Rightarrow R = \displaystyle {{M{B^2} - M{T^2}} \over {2MB}}\)

\( =\displaystyle  {{2500 - 400} \over {2.50}} = 21 (cm)\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài