Bài 24 trang 8 SBT toán 8 tập 2


Giải bài 24 trang 8 sách bài tập toán 8. Tìm các giá trị của x sao cho hai biểu thức A và B cho sau đây có giá trị bằng nhau : a) A = (x - 3)(x + 4) - 2(3x - 2) ; B = (x - 4)^2 ; ...

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Tìm các giá trị của \(x\) sao cho hai biểu thức \(A\) và \(B\) cho sau đây có giá trị bằng nhau: 

LG a

\(A = \left( {x - 3} \right)\left( {x + 4} \right) - 2\left( {3x - 2} \right)\)

\(B = {\left( {x - 4} \right)^2}\)

Phương pháp giải:

Cho \(A=B\) rồi giải phương trình ẩn \(x\) để tìm \(x\).

Giải chi tiết:

Ta có: \(A = B\)

\( \Leftrightarrow \left( {x - 3} \right)\left( {x + 4} \right) - 2\left( {3x - 2} \right) \) \(= {\left( {x - 4} \right)^2}\)

\( \Leftrightarrow {x^2} + 4x - 3x - 12 - 6x + 4 \) \(= {x^2} - 8x + 16  \)

\(  \Leftrightarrow {x^2} - {x^2} + 4x - 3x - 6x + 8x \) \(= 16 + 12 - 4\) 

\( \Leftrightarrow 3x = 24 \Leftrightarrow x = 8  \)

Vậy với \(x = 8\) thì \(A = B\).

LG b

\(A = \left( {x + 2} \right)\left( {x - 2} \right) + 3{x^2}\)

\(B = {\left( {2x + 1} \right)^2} + 2x\)

Phương pháp giải:

Cho \(A=B\) rồi giải phương trình ẩn \(x\) để tìm \(x\).

Giải chi tiết:

Ta có : \(A = B\)

\( \Leftrightarrow \left( {x + 2} \right)\left( {x - 2} \right) + 3{x^2} \) \(= {\left( {2x + 1} \right)^2} + 2x\)

\( \Leftrightarrow {x^2} - 4 + 3{x^2} \) \(= 4{x^2} + 4x + 1 + 2x  \)

\( \Leftrightarrow {x^2} + 3{x^2} - 4{x^2} - 4x - 2x \) \( = 1 + 4  \)

\( \displaystyle \Leftrightarrow  - 6x = 5 \Leftrightarrow x =  - {5 \over 6} \)

Vậy với  \( \displaystyle  x =  - {5 \over 6} \) thì \(A = B\).

LG c

\(A = \left( {x - 1} \right)\left( {{x^2} + x + 1} \right) - 2x\)

\(B = x\left( {x - 1} \right)\left( {x + 1} \right)\)

Phương pháp giải:

Cho \(A=B\) rồi giải phương trình ẩn \(x\) để tìm \(x\).

Giải chi tiết:

Ta có: \(A = B\)

\( \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} + x + 1} \right) - 2x \) \(= x\left( {x - 1} \right)\left( {x + 1} \right)\)

\(\eqalign{  &  \Leftrightarrow {x^3} - 1 - 2x = x\left( {{x^2} - 1} \right)  \cr  &  \Leftrightarrow {x^3} - 1 - 2x = {x^3} - x  \cr  &  \Leftrightarrow {x^3} - {x^3} - 2x + x = 1  \cr  &  \Leftrightarrow  - x = 1 \Leftrightarrow x =  - 1 \cr} \)

Vậy với \(x = -1\) thì \(A = B\).

LG d

\(A = {\left( {x + 1} \right)^3} - {\left( {x - 2} \right)^3}\)

\(B = \left( {3x - 1} \right)\left( {3x + 1} \right)\)

Phương pháp giải:

Cho \(A=B\) rồi giải phương trình ẩn \(x\) để tìm \(x\).

Giải chi tiết:

Ta có : \(A = B\)

\( \Leftrightarrow {\left( {x + 1} \right)^3} - {\left( {x - 2} \right)^3} \) \(= \left( {3x - 1} \right)\left( {3x + 1} \right)\)

\(  \Leftrightarrow {x^3} + 3{x^2} + 3x + 1 - {x^3} + 6{x^2} \) \( - 12x + 8  = 9{x^2} - 1  \)

\( \Leftrightarrow {x^3} - {x^3} + 3{x^2} + 6{x^2} - 9{x^2} + 3x \) \( - 12x  =  - 1 - 1 - 8  \)

\(\displaystyle  \Leftrightarrow  - 9x =  - 10 \Leftrightarrow x = {{10} \over 9} \)

Vậy với \(\displaystyle x = {{10} \over 9}\) thì \(A = B\).

Loigiaihay.com


Bình chọn:
4.4 trên 15 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí