Bài 24 trang 8 SBT toán 8 tập 2>
Giải bài 24 trang 8 sách bài tập toán 8. Tìm các giá trị của x sao cho hai biểu thức A và B cho sau đây có giá trị bằng nhau : a) A = (x - 3)(x + 4) - 2(3x - 2) ; B = (x - 4)^2 ; ...
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Tìm các giá trị của \(x\) sao cho hai biểu thức \(A\) và \(B\) cho sau đây có giá trị bằng nhau:
LG a
\(A = \left( {x - 3} \right)\left( {x + 4} \right) - 2\left( {3x - 2} \right)\)
\(B = {\left( {x - 4} \right)^2}\)
Phương pháp giải:
Cho \(A=B\) rồi giải phương trình ẩn \(x\) để tìm \(x\).
Giải chi tiết:
Ta có: \(A = B\)
\( \Leftrightarrow \left( {x - 3} \right)\left( {x + 4} \right) - 2\left( {3x - 2} \right) \) \(= {\left( {x - 4} \right)^2}\)
\( \Leftrightarrow {x^2} + 4x - 3x - 12 - 6x + 4 \) \(= {x^2} - 8x + 16 \)
\( \Leftrightarrow {x^2} - {x^2} + 4x - 3x - 6x + 8x \) \(= 16 + 12 - 4\)
\( \Leftrightarrow 3x = 24 \Leftrightarrow x = 8 \)
Vậy với \(x = 8\) thì \(A = B\).
LG b
\(A = \left( {x + 2} \right)\left( {x - 2} \right) + 3{x^2}\)
\(B = {\left( {2x + 1} \right)^2} + 2x\)
Phương pháp giải:
Cho \(A=B\) rồi giải phương trình ẩn \(x\) để tìm \(x\).
Giải chi tiết:
Ta có : \(A = B\)
\( \Leftrightarrow \left( {x + 2} \right)\left( {x - 2} \right) + 3{x^2} \) \(= {\left( {2x + 1} \right)^2} + 2x\)
\( \Leftrightarrow {x^2} - 4 + 3{x^2} \) \(= 4{x^2} + 4x + 1 + 2x \)
\( \Leftrightarrow {x^2} + 3{x^2} - 4{x^2} - 4x - 2x \) \( = 1 + 4 \)
\( \displaystyle \Leftrightarrow - 6x = 5 \Leftrightarrow x = - {5 \over 6} \)
Vậy với \( \displaystyle x = - {5 \over 6} \) thì \(A = B\).
LG c
\(A = \left( {x - 1} \right)\left( {{x^2} + x + 1} \right) - 2x\)
\(B = x\left( {x - 1} \right)\left( {x + 1} \right)\)
Phương pháp giải:
Cho \(A=B\) rồi giải phương trình ẩn \(x\) để tìm \(x\).
Giải chi tiết:
Ta có: \(A = B\)
\( \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} + x + 1} \right) - 2x \) \(= x\left( {x - 1} \right)\left( {x + 1} \right)\)
\(\eqalign{ & \Leftrightarrow {x^3} - 1 - 2x = x\left( {{x^2} - 1} \right) \cr & \Leftrightarrow {x^3} - 1 - 2x = {x^3} - x \cr & \Leftrightarrow {x^3} - {x^3} - 2x + x = 1 \cr & \Leftrightarrow - x = 1 \Leftrightarrow x = - 1 \cr} \)
Vậy với \(x = -1\) thì \(A = B\).
LG d
\(A = {\left( {x + 1} \right)^3} - {\left( {x - 2} \right)^3}\)
\(B = \left( {3x - 1} \right)\left( {3x + 1} \right)\)
Phương pháp giải:
Cho \(A=B\) rồi giải phương trình ẩn \(x\) để tìm \(x\).
Giải chi tiết:
Ta có : \(A = B\)
\( \Leftrightarrow {\left( {x + 1} \right)^3} - {\left( {x - 2} \right)^3} \) \(= \left( {3x - 1} \right)\left( {3x + 1} \right)\)
\( \Leftrightarrow {x^3} + 3{x^2} + 3x + 1 - {x^3} + 6{x^2} \) \( - 12x + 8 = 9{x^2} - 1 \)
\( \Leftrightarrow {x^3} - {x^3} + 3{x^2} + 6{x^2} - 9{x^2} + 3x \) \( - 12x = - 1 - 1 - 8 \)
\(\displaystyle \Leftrightarrow - 9x = - 10 \Leftrightarrow x = {{10} \over 9} \)
Vậy với \(\displaystyle x = {{10} \over 9}\) thì \(A = B\).
Loigiaihay.com


- Bài 25 trang 9 SBT toán 8 tập 2
- Bài 3.1 phần bài tập bổ sung trang 9 SBT toán 8 tập 2
- Bài 3.2 phần bài tập bổ sung trang 9 SBT toán 8 tập 2
- Bài 23 trang 8 SBT toán 8 tập 2
- Bài 22 trang 8 SBT toán 8 tập 2
>> Xem thêm