Bài 23 trang 8 SBT toán 8 tập 2


Giải bài 23 trang 8 sách bài tập toán 8. Tìm giá trị của k sao cho : a) Phương trình (2x + 1)(9x + 2k) – 5(x + 2) = 40 có nghiệm x = 2 ...

Lựa chọn câu để xem lời giải nhanh hơn

Tìm giá trị của \(k\) sao cho:

LG a

Phương trình \((2x + 1)(9x + 2k) – 5(x + 2) = 40\) có nghiệm \(x = 2\).

Phương pháp giải:

Thay giá trị của \(x\) vào phương trình đã cho, khi đó thu được phương trình ẩn \(k\). Giải phương trình ẩn \(k\) để tìm \(k\).

Lời giải chi tiết:

Thay \(x = 2\) vào phương trình \((2x + 1)(9x + 2k) – 5(x + 2) = 40\), ta có:

\(\eqalign{  & \left( {2.2 + 1} \right)\left( {9.2 + 2k} \right) - 5\left( {2 + 2} \right) = 40  \cr  &  \Leftrightarrow \left( {4 + 1} \right)\left( {18 + 2k} \right) - 5.4 = 40  \cr  &  \Leftrightarrow 5\left( {18 + 2k} \right) - 20 = 40  \cr  &  \Leftrightarrow 90 + 10k - 20 = 40  \cr  &  \Leftrightarrow 10k = 40 - 90 + 20  \cr  &  \Leftrightarrow 10k =  - 30  \cr  &  \Leftrightarrow k =  - 3 \cr} \)

Vậy khi \(k = -3\) thì phương trình \((2x + 1)(9x + 2k) – 5(x + 2) = 40\) có nghiệm \(x = 2\).

LG b

Phương trình \(2\left( {2x + 1} \right) + 18 = 3\left( {x + 2} \right)\left( {2x + k} \right)\) có nghiệm \(x = 1\).

Phương pháp giải:

Thay giá trị của \(x\) vào phương trình đã cho, khi đó thu được phương trình ẩn \(k\). Giải phương trình ẩn \(k\) để tìm \(k\).

Lời giải chi tiết:

 Thay \(x = 1\) vào phương trình  \(2\left( {2x + 1} \right) + 18 = 3\left( {x + 2} \right)\left( {2x + k} \right)\), ta có:

\(\eqalign{  & 2\left( {2.1 + 1} \right) + 18 = 3\left( {1 + 2} \right)\left( {2.1 + k} \right)  \cr  &  \Leftrightarrow 2\left( {2 + 1} \right) + 18 = 3.3\left( {2 + k} \right)  \cr  &  \Leftrightarrow 2.3 + 18 = 9\left( {2 + k} \right)  \cr  &  \Leftrightarrow 6 + 18 = 18 + 9k  \cr  &  \Leftrightarrow 24 - 18 = 9k  \cr  &  \Leftrightarrow 6 = 9k  \cr  &  \Leftrightarrow k = {6 \over 9} \cr  & \Leftrightarrow k= {2 \over 3} \cr} \)

Vậy khi \(k = \dfrac{2}{3}\) thì phương trình  có nghiệm \(x = 1\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.1 trên 9 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài