Bài 21 trang 8 SBT toán 8 tập 2


Giải bài 21 trang 8 sách bài tập toán 8. Tìm điều kiện của x để giá trị của mỗi phân thức sau được xác định : ...

Lựa chọn câu để xem lời giải nhanh hơn

Tìm điều kiện của \(x\) để giá trị của mỗi phân thức sau được xác định :

LG a

\(\) \(\displaystyle A = {{3x + 2} \over {2\left( {x - 1} \right) - 3\left( {2x + 1} \right)}}\)

Phương pháp giải:

Phân thức xác định khi mẫu thức khác \(0\).

Lời giải chi tiết:

Phân thức \(\displaystyle A = {{3x + 2} \over {2\left( {x - 1} \right) - 3\left( {2x + 1} \right)}}\) xác định khi : \(2\left( {x - 1} \right) - 3\left( {2x + 1} \right) \ne 0\)

Ta giải phương trình : \(2\left( {x - 1} \right) - 3\left( {2x + 1} \right) = 0\).

Ta có: \(2\left( {x - 1} \right) - 3\left( {2x + 1} \right) = 0 \)

          \(\Leftrightarrow 2x - 2 - 6x - 3 = 0\)

          \( \Leftrightarrow  - 4x - 5 = 0 \)

          \( \displaystyle \Leftrightarrow 4x =  - 5 \Leftrightarrow x =  - {5 \over 4}\)

Suy ra \(2\left( {x - 1} \right) - 3\left( {2x + 1} \right) \ne 0\) khi \(\displaystyle x \ne  - {5 \over 4}\)

Vậy khi \(\displaystyle x \ne  - {5 \over 4}\) thì phân thức \(A\) xác định. 

LG b

\(\) \(\displaystyle B = {{0,5\left( {x + 3} \right) - 2} \over {1,2\left( {x + 0,7} \right) - 4\left( {0,6x + 0,9} \right)}}\)

Phương pháp giải:

Phân thức xác định khi mẫu thức khác \(0\).

Lời giải chi tiết:

Phân thức \(\displaystyle B = {{0,5\left( {x + 3} \right) - 2} \over {1,2\left( {x + 0,7} \right) - 4\left( {0,6x + 0,9} \right)}}\) xác định khi :

\(1,2\left( {x + 0,7} \right) - 4\left( {0,6x + 0,9} \right) \ne 0\)

Ta giải phương trình: \(1,2\left( {x + 0,7} \right) - 4\left( {0,6x + 0,9} \right) = 0\)

Ta có:

\(\eqalign{  & 1,2\left( {x + 0,7} \right) - 4\left( {0,6x + 0,9} \right) = 0  \cr  &  \Leftrightarrow 1,2x + 0,84 - 2,4x - 3,6 = 0  \cr  &  \Leftrightarrow  - 1,2x - 2,76 = 0 \cr  &  \Leftrightarrow  - 1,2x = 2,76 \cr  &  \Leftrightarrow  x = 2,76:(-1,2) \Leftrightarrow x =  - 2,3 \cr} \)

Suy ra \(1,2\left( {x + 0,7} \right) - 4\left( {0,6x + 0,9} \right) \ne 0\) khi \(x \ne  - 2,3\)

Vậy khi \(x \ne  - 2,3\) thì phân thức \(B\) xác định.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.2 trên 11 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài