Bài tập 7 trang 110 Tài liệu dạy – học Toán 8 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Đường chéo của một hình hộp chữ nhật là đoạn nối hai đỉnh không thuộc bất cứ mặt bên hay mặt đáy nào. Chứng minh rằng độ dài đường chéo d được tính theo ba kích thước a, b, c bởi công thức:

Đề bài

Đường chéo của một hình hộp chữ nhật là đoạn nối hai đỉnh không thuộc bất cứ mặt bên hay mặt đáy nào. Chứng minh rằng độ dài đường chéo d được tính theo ba kích thước a, b, c bởi công thức:

\(d = \sqrt {{a^2} + {b^2} + {c^2}} \)

Lời giải chi tiết

 

Xét ∆BCD vuông tại C ta có

\(B{D^2} = D{C^2} + B{C^2}\) (định lí Py-ta-go)

Xét ∆DBA vuông tại B ta có:

\(D{A^2} = A{B^2} + B{D^2}\) (định lí Py-ta-go)

Do đó \(D{A^2} = A{B^2} + D{C^2} + B{C^2} \)\(\,= {c^2} + {a^2} + {b^2}\)

\( \Rightarrow {d^2} = {a^2} + {b^2} + {c^2} \)

\(\Rightarrow d = \sqrt {{a^2} + {b^2} + {c^2}} \)

Loigiaihay.com

Các bài liên quan: - Bài tập - Chủ đề 3 : Hình lăng trụ đứng

>>Học trực tuyến các môn học lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu