Bài 8 trang 169 SGK Đại số và Giải tích 11


Giải bài 8 trang 169 SGK Đại số và Giải tích 11. Giải bất phương trình

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải bất phương trình \(f'(x) > g'(x)\), biết rằng:

LG a

\(f(x) = x^3+ x - \sqrt2\), \(g(x) = 3x^2+ x + \sqrt2\)

Phương pháp giải:

Tính đạo hàm của các hàm số f(x), g(x) và giải bất phương trình.

Lời giải chi tiết:

\(\begin{array}{l}
\,\,f'\left( x \right) = 3{x^2} + 1\\
\,\,\,\,\,\,g'\left( x \right) = 6x + 1\\
f'\left( x \right) > g'\left( x \right) \Leftrightarrow 3{x^2} + 1 > 6x + 1\\
\Leftrightarrow 3{x^2} - 6x > 0 \Leftrightarrow 3x\left( {x - 2} \right) > 0\\ \Leftrightarrow \left[ \begin{array}{l}
x > 2\\
x < 0
\end{array} \right.\\
\Rightarrow x \in \left( { - \infty ;0} \right) \cup \left( {2; + \infty } \right)\\
\end{array}\)

LG b

\(f(x) = 2x^3- x^2+ \sqrt3\), \(g(x) = x^3+  \dfrac{x^{2}}{2} - \sqrt 3\)

Phương pháp giải:

Tính đạo hàm của các hàm số f(x), g(x) và giải bất phương trình.

Lời giải chi tiết:

\(\begin{array}{l}
\,\,f'\left( x \right) = 6{x^2} - 2x\\
\,\,\,\,\,\,g'\left( x \right) = 3{x^2} + x\\
f'\left( x \right) > g'\left( x \right) \Leftrightarrow 6{x^2} - 2x > 3{x^2} + x\\
\Leftrightarrow 3{x^2} - 3x > 0 \Leftrightarrow 3x\left( {x - 1} \right) > 0 \\\Leftrightarrow \left[ \begin{array}{l}
x > 1\\
x < 0
\end{array} \right.\\
\Rightarrow x \in \left( { - \infty ;0} \right) \cup \left( {1; + \infty } \right)
\end{array}\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.3 trên 18 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài