Giải toán 11, giải bài tập toán lớp 11 đầy đủ đại số và giải tích, hình học
Bài 3. Đạo hàm của hàm số lượng giác
Bài 4 trang 169 SGK Đại số và Giải tích 11>
Tìm đạo hàm của các hàm số sau:
Đề bài
Tìm đạo hàm của các hàm số sau:
\(\begin{array}{l}
a)\,\,y = \left( {9 - 2x} \right)\left( {2{x^3} - 9{x^2} + 1} \right)\\
b)\,\,y = \left( {6\sqrt x - \dfrac{1}{{{x^2}}}} \right)\left( {7x - 3} \right)\\
c)\,\,y = \left( {x - 2} \right)\sqrt {{x^2} + 1} \\
d)\,y = {\tan ^2}x - {\cot}{x^2}\\
e)\,\,y = \cos \dfrac{x}{{1 + x}}
\end{array}\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sử dụng các quy tắc tính đạo hàm của tích, thương, quy tắc tính đạo hàm hàm số hợp và bảng đạo hàm cơ bản.
Lời giải chi tiết
\(\begin{array}{l}
a)\,\,y = \left( {9 - 2x} \right)\left( {2{x^3} - 9{x^2} + 1} \right)\\y' = \left( {9 - 2x} \right)'\left( {2{x^3} - 9{x^2} + 1} \right) \\+ \left( {9 - 2x} \right)\left( {2{x^3} - 9{x^2} + 1} \right)'\\
= - 2\left( {2{x^3} - 9{x^2} + 1} \right) + \left( {9 - 2x} \right)\left( {6{x^2} - 18x} \right)\\
= - 4{x^3} + 18{x^2} - 2 + 54{x^2} - 162x - 12{x^3} + 36{x^2}\\
= - 16{x^3} + 108{x^2} - 162x - 2\\
b)\,\,y = \left( {6\sqrt x - \dfrac{1}{{{x^2}}}} \right)\left( {7x - 3} \right)\\y' = \left( {6\sqrt x - \dfrac{1}{{{x^2}}}} \right)'\left( {7x - 3} \right) + \left( {6\sqrt x - \dfrac{1}{{{x^2}}}} \right)\left( {7x - 3} \right)'\\
= \left( {6.\dfrac{1}{{2\sqrt x }} - \dfrac{{ - \left( {{x^2}} \right)'}}{{{{\left( {{x^2}} \right)}^2}}}} \right)\left( {7x - 3} \right) + \left( {6\sqrt x - \dfrac{1}{{{x^2}}}} \right).7\\ = \left( {\dfrac{3}{{\sqrt x }} + \dfrac{{2x}}{{{x^4}}}} \right)\left( {7x - 3} \right) + 7\left( {6\sqrt x - \dfrac{1}{{{x^2}}}} \right)\\= \left( {\dfrac{3}{{\sqrt x }} + \dfrac{2}{{{x^3}}}} \right)\left( {7x - 3} \right) + 7\left( {6\sqrt x - \dfrac{1}{{{x^2}}}} \right)\\
= 21\sqrt x - \dfrac{9}{{\sqrt x }} + \dfrac{{14}}{{{x^2}}} - \dfrac{6}{{{x^3}}} + 42\sqrt x - \dfrac{7}{{{x^2}}}\\
= \dfrac{{ - 6}}{{{x^3}}} + \dfrac{7}{{{x^2}}} + 63\sqrt x - \dfrac{9}{{\sqrt x }}\\
c)\,\,y = \left( {x - 2} \right)\sqrt {{x^2} + 1} \\y' = \left( {x - 2} \right)'\sqrt {{x^2} + 1} + \left( {x - 2} \right)\left( {\sqrt {{x^2} + 1} } \right)'\\ = 1.\sqrt {{x^2} + 1} + \left( {x - 2} \right).\dfrac{{\left( {{x^2} + 1} \right)'}}{{2\sqrt {{x^2} + 1} }} \\= \sqrt {{x^2} + 1} + \left( {x - 2} \right).\dfrac{{2x}}{{2\sqrt {{x^2} + 1} }}\\
= \sqrt {{x^2} + 1} + \left( {x - 2} \right)\dfrac{x}{{\sqrt {{x^2} + 1} }}\\
= \dfrac{{{x^2} + 1 + {x^2} - 2x}}{{\sqrt {{x^2} + 1} }}\\
= \dfrac{{2{x^2} - 2x + 1}}{{\sqrt {{x^2} + 1} }}\\
d)\,y = {\tan ^2}x - \cot {x^2}\\y' = \left( {{{\tan }^2}x} \right)' - \left( {\cot {x^2}} \right)'\\ = 2\tan x.\left( {\tan x} \right)' - \left( {{x^2}} \right)'.\dfrac{{ - 1}}{{\sin ^2 {x^2}}}\\
= 2\tan x.\dfrac{1}{{{{\cos }^2}x}} + \dfrac{{2x}}{{{{\sin }^2}x^2}}\\
= \dfrac{{2\sin x}}{{{{\cos }^3}x}} + \dfrac{{2x}}{{{{\sin }^2}x^2}}\\
e)y = \cos \dfrac{x}{{1 + x}}\\y' = \left( {\dfrac{x}{{x + 1}}} \right)'.\left( { - \sin \dfrac{x}{{x + 1}}} \right)\\ = - \sin \left( {\dfrac{x}{{1 + x}}} \right).\dfrac{{\left( x \right)'\left( {1 + x} \right) - x.\left( {1 + x} \right)'}}{{{{\left( {1 + x} \right)}^2}}}\\
= - \sin \dfrac{x}{{1 + x}}.\left( {\dfrac{{1 + x - x}}{{{{\left( {1 + x} \right)}^2}}}} \right)\\
= - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}.\sin \dfrac{x}{{1 + x}}
\end{array}\)
Loigiaihay.com




