Bài 7 trang 157 SGK Đại số và Giải tích 11


Một vật rơi tự do theo phương trình

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Một vật rơi tự do theo phương trình \(s = {1 \over 2}g{t^2}\) , trong đó \(g ≈ 9,8\) m/s2 là gia tốc trọng trường.

LG a

Tìm vận tốc trung bình của chuyển động trong khoảng thời gian từ t (t = 5s) đến \(t + ∆t\), trong các trường hợp \(∆t = 0,1s; ∆t = 0,05s; ∆t = 0,001s\).

Phương pháp giải:

Vận tốc trung bình của chuyển động trong khoảng thời gian từ \(t\) đến \(t + ∆t\) là  \(v_{tb}=  \dfrac{s\left ( t+\Delta t \right )-s\left ( t \right )}{\Delta t}\)

Lời giải chi tiết:

Vận tốc trung bình của chuyển động trong khoảng thời gian từ \(t\) đến \(t + ∆t\) là 

\(\begin{array}{l}
{v_{tb}} = \dfrac{{s\left( {t + \Delta t} \right) - s\left( t \right)}}{{\Delta t}}\\
\,\,\,\,\,\, = \dfrac{{\dfrac{1}{2}g{{\left( {t + \Delta t} \right)}^2} - \dfrac{1}{2}g{t^2}}}{{\Delta t}}\\
\,\,\,\,\,\, = \dfrac{{g{t^2} + 2gt.\Delta t + g\Delta {t^2} - g{t^2}}}{{2\Delta t}}\\
\,\,\,\,\,\, = \dfrac{1}{2}g\left( {2t + \Delta t} \right)
\end{array}\)

Với \( t=5\) và

+) \(∆t = 0,1\) thì \(v_{tb}≈ 4,9. (10 + 0,1) ≈ 49,49 m/s\);

+) \(∆t = 0,05\) thì \(v_{tb}≈ 4,9. (10 + 0,05) ≈ 49,245 m/s\);

+) \(∆t = 0,001\) thì \(v_{tb} ≈ 4,9. (10 + 0,001) ≈ 49,005 m/s\).

LG b

Tìm vận tốc tức thời của chuyển động tại thời điểm \(t = 5s\).

Lời giải chi tiết:

Vận tốc tức thời của chuyển động tại thời điểm \(t = 5s\) chính là vận tốc trung bình trong khoảng thời gian \((t; t + Δt) \) khi \(Δt → 0\) là :

\({v_{tt}} = \mathop {\lim }\limits_{\Delta t \to 0} \dfrac{1}{2}g\left( {2t + \Delta t} \right) \) \(= gt = 9,8.5 = 49\left( {m/s} \right)\)

 Loigiaihay.com


Bình chọn:
4.2 trên 10 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài