Bài 7 trang 157 SGK Đại số và Giải tích 11

Bình chọn:
4 trên 8 phiếu

Giải bài 7 trang 157 SGK Đại số và Giải tích 11. Một vật rơi tự do theo phương trình

Đề bài

Một vật rơi tự do theo phương trình \(s = {1 \over 2}g{t^2}\) , trong đó \(g ≈ 9,8\) m/s2 là gia tốc trọng trường.

a) Tìm vận tốc trung bình của chuyển động trong khoảng thời gian từ t (t = 5s) đến \(t + ∆t\), trong các trường hợp \(∆t = 0,1s; ∆t = 0,05s; ∆t = 0,001s\).

b) Tìm vận tốc tức thời của chuyển động tại thời điểm \(t = 5s\).

Phương pháp giải - Xem chi tiết

a) Vận tốc trung bình của chuyển động trong khoảng thời gian từ \(t\) đến \(t + ∆t\) là  \(v_{tb}=  \frac{s\left ( t+\Delta t \right )-s\left ( t \right )}{\Delta t}\)

Lời giải chi tiết

a) Vận tốc trung bình của chuyển động trong khoảng thời gian từ \(t\) đến \(t + ∆t\) là 

\(\begin{array}{l}
{v_{tb}} = \frac{{s\left( {t + \Delta t} \right) - s\left( t \right)}}{{\Delta t}}\\
\,\,\,\,\,\, = \frac{{\frac{1}{2}g{{\left( {t + \Delta t} \right)}^2} - \frac{1}{2}g{t^2}}}{{\Delta t}}\\
\,\,\,\,\,\, = \frac{{g{t^2} + 2gt.\Delta t + g\Delta {t^2} - g{t^2}}}{{2\Delta t}}\\
\,\,\,\,\,\, = \frac{1}{2}g\left( {2t + \Delta t} \right)
\end{array}\)

Với \( t=5\) và

+) \(∆t = 0,1\) thì \(v_{tb}≈ 4,9. (10 + 0,1) ≈ 49,49 m/s\);

+) \(∆t = 0,05\) thì \(v_{tb}≈ 4,9. (10 + 0,05) ≈ 49,245 m/s\);

+) \(∆t = 0,001\) thì \(v_{tb} ≈ 4,9. (10 + 0,001) ≈ 49,005 m/s\).

b) Vận tốc tức thời của chuyển động tại thời điểm \(t = 5s\) tương ứng với \(∆t = 0\) nên \(v ≈ 4,9 . 10 = 49 m/s\).

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.