Bài 3 trang 156 SGK Đại số và Giải tích 11

Bình chọn:
3.6 trên 16 phiếu

Giải bài 3 trang 156 SGK Đại số và Giải tích 11. Tính (bằng định nghĩa) đạo hàm của mỗi hàm số sau tại các điểm đã chỉ ra

Đề bài

Tính (bằng định nghĩa) đạo hàm của mỗi hàm số sau tại các điểm đã chỉ ra:

a) \(y = x^2+ x\) tại \(x_0= 1\);

b) \(y =  \frac{1}{x}\) tại \(x_0= 2\);

c) \(y = \frac{x+1}{x-1}\) tại \(x_0 = 0\).

Phương pháp giải - Xem chi tiết

Bước 1: Giả sử \(\Delta x\) là số gia của đối số tại \(x_0\), tính \(\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)\).

Bước 2: Lập tỉ số \(\frac{{\Delta y}}{{\Delta x}}\).

Bước 3: Tìm \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}}\).

Kết luận \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}}\).

Lời giải chi tiết

a) Giả sử \(∆x\) là số gia của số đối tại \(x_0 = 1\). Ta có:

\(\begin{array}{l}
\Delta y = f\left( {1 + \Delta x} \right) - f\left( 1 \right)\\
\,\,\,\,\,\, = {\left( {1 + \Delta x} \right)^2} + \left( {1 + \Delta x} \right) - {1^2} - 1\\
\,\,\,\,\, = 1 + 2\Delta x + {\left( {\Delta x} \right)^2} + 1 + \Delta x - 2\\
\,\,\,\,\, = \Delta x\left( {\Delta x + 3} \right)\\
\Rightarrow \frac{{\Delta y}}{{\Delta x}} = \Delta x + 3\\
\Rightarrow \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \left( {\Delta x + 3} \right) = 3
\end{array}\)

Vậy \(f'(1) = 3\).

b) Giả sử \(∆x\) là số gia của số đối tại \(x_0= 2\). Ta có:

\(\begin{array}{l}
\Delta y = f\left( {2 + \Delta x} \right) - f\left( 2 \right)\\
\,\,\,\,\,\,\, = \frac{1}{{2 + \Delta x}} - \frac{1}{2}\\
\,\,\,\,\,\,\, = \frac{{2 - 2 - \Delta x}}{{2\left( {2 + \Delta x} \right)}} = \frac{{ - \Delta x}}{{2\left( {2 + \Delta x} \right)}}\\
\Rightarrow \frac{{\Delta y}}{{\Delta x}} = \frac{{ - 1}}{{2\left( {2 + \Delta x} \right)}}\\
\Rightarrow \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \left( {\frac{{ - 1}}{{2\left( {2 + \Delta x} \right)}}} \right) = \frac{{ - 1}}{{2.2}} = - \frac{1}{4}
\end{array}\)

Vậy \(f'(2) = -   \frac{1}{4}\).

c) Giả sử \(∆x\) là số gia của số đối tại \(x_0= 0\).Ta có:

\(\begin{array}{l}
\Delta y = f\left( {\Delta x} \right) - f\left( 0 \right)\\
\,\,\,\,\,\,\, = \frac{{\Delta x + 1}}{{\Delta x - 1}} - \frac{{0 + 1}}{{0 - 1}}\\
\,\,\,\,\,\,\, = \frac{{\Delta x + 1}}{{\Delta x - 1}} + 1\\
\,\,\,\,\,\,\, = \frac{{\Delta x + 1 + \Delta x - 1}}{{\Delta x - 1}} = \frac{{2\Delta x}}{{\Delta x - 1}}\\
\Rightarrow \frac{{\Delta y}}{{\Delta x}} = \frac{2}{{\Delta x - 1}}\\
\Rightarrow \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \left( {\frac{2}{{\Delta x - 1}}} \right) = \frac{2}{{ - 1}} = - 2
\end{array}\)

Vậy \(f'(0) = -2\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu



Các bài liên quan