CHỈ CÒN 100 SLOT CHO 2K8 XUẤT PHÁT SỚM ÔN ĐGNL & ĐGTD 2026

ƯU ĐÃI 50% HỌC PHÍ + TẶNG MIỄN PHÍ BỘ SÁCH ĐỀ TỔNG HỢP

Chỉ còn 1 ngày
Xem chi tiết

Bài 3 trang 156 SGK Đại số và Giải tích 11


Tính (bằng định nghĩa) đạo hàm của mỗi hàm số sau tại các điểm đã chỉ ra

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tính (bằng định nghĩa) đạo hàm của mỗi hàm số sau tại các điểm đã chỉ ra:

LG a

y=x2+x tại x0=1

Phương pháp giải:

Bước 1: Giả sử Δx là số gia của đối số tại x0, tính Δy=f(x0+Δx)f(x0).

Bước 2: Lập tỉ số ΔyΔx.

Bước 3: Tìm limΔx0ΔyΔx.

Kết luận f(x0)=limΔx0ΔyΔx.

Lời giải chi tiết:

Giả sử x là số gia của số đối tại x0=1. Ta có:

Δy=f(1+Δx)f(1)=(1+Δx)2+(1+Δx)121=1+2Δx+(Δx)2+1+Δx2=Δx(Δx+3)ΔyΔx=Δx+3limΔx0ΔyΔx=limΔx0(Δx+3)=3

Vậy f(1)=3.

Cách khác:

f(x)=x2+xf(1)=2limx1f(x)f(1)x1=limx1x2+x2x1=limx1(x1)(x+2)x1=limx1(x+2)=1+2=3f(1)=3

Quảng cáo

Lộ trình SUN 2026

LG b

y=1x tại x0=2

Lời giải chi tiết:

Giả sử x là số gia của số đối tại x0=2. Ta có:

Δy=f(2+Δx)f(2)=12+Δx12=22Δx2(2+Δx)=Δx2(2+Δx)ΔyΔx=12(2+Δx)limΔx0ΔyΔx=limΔx0(12(2+Δx))=12.2=14

Vậy f(2)=14.

Cách khác:

f(x)=1xf(2)=12limx2f(x)f(2)x2=limx21x12x2=limx22x2x(2x)=limx2(12x)=12.2=14f(2)=14

LG c

y=x+1x1 tại x0=0

Lời giải chi tiết:

Giả sử x là số gia của số đối tại x0=0.Ta có:

Δy=f(Δx)f(0)=Δx+1Δx10+101=Δx+1Δx1+1=Δx+1+Δx1Δx1=2ΔxΔx1ΔyΔx=2Δx1limΔx0ΔyΔx=limΔx0(2Δx1)=21=2

Vậy f(0)=2.

Cách khác:

f(x)=x+1x1f(0)=1limx0f(x)f(0)x0=limx0x+1x1+1x=limx0x+1+x1x1x=limx02xx1x=limx02x1=201=2f(0)=2

 Loigiaihay.com


Bình chọn:
4.3 trên 35 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.