Bài 6 trang 156 SGK Đại số và Giải tích 11


Viết phương trình tiếp tuyến của đường hypebol

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Viết phương trình tiếp tuyến của đường hypebol y=1x:

LG a

Tại điểm (12;2)

Phương pháp giải:

Phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ x=x0 là: y=f(x0)(xx0)+f(x0)

Lời giải chi tiết:

Xét giới hạn:

limxx0f(x)f(x0)xx0=limxx01x1x0xx0=limxx0x0xx.x0(xx0)=limxx01x.x0=1x20y(x0)=1x20

Ta có: y(12)=4.

Vậy phương trình tiếp tuyến của hypebol tại điểm (12;2) là y=4(x12)+2=4x+4

Quảng cáo

Lộ trình SUN 2026

LG b

Tại điểm có hoành độ bằng 1;

Phương pháp giải:

Phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ x=x0 là: y=f(x0)(xx0)+f(x0)

Lời giải chi tiết:

Ta có: y(1)=1,y(1)=1.

Vậy phương trình tiếp tuyến tại điểm có hoành độ là 1 là: y=(x+1)1=x2.

LG c

Biết rằng hệ số góc của tiếp tuyến bằng 14.

Phương pháp giải:

Hệ số góc của tiếp tuyến tại điểm có hoành độ x0 là f(x0)=3.

Giải phương trình tìm x0, từ đó viết phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ x=x0.

Lời giải chi tiết:

Gọi x0 là hoành độ tiếp điểm. Ta có

y(x0)=141x20=14x20=4x0=±2.

Với x0=2 ta có y(2)=12, phương trình tiếp tuyến là y=14(x2)+12=14x+1.

Với x0=2 ta có y(2)=12, phương trình tiếp tuyến là: y=14(x+2)12=14x1.

Chú ý: Trong các ý a, b, c đều sử dụng cách tính đạo hàm của hàm số tại điểm x=x0 bằng định nghĩa. Sau khi học xong bài 2 thì các em có thể quay lại làm lại bài tập này, việc tính đạo hàm sẽ dễ hơn rất nhiều.

 Loigiaihay.com


Bình chọn:
4.2 trên 30 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.