Bài 5 trang 156 SGK Đại số và Giải tích 11

Bình chọn:
4.1 trên 41 phiếu

Giải bài 5 trang 156 SGK Đại số và Giải tích 11. Viết phương trình tiếp tuyến của đường cong

Đề bài

Viết phương trình tiếp tuyến của đường cong \(y = x^3\):

a) Tại điểm có tọa độ \((-1;-1)\);

b) Tại điểm có hoành độ bằng \(2\);

c) Biết hệ số góc của tiếp tuyến bằng \(3\).

Phương pháp giải - Xem chi tiết

a, b) Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x = {x_0}\) là: \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\)

c) Hệ số góc của tiếp tuyến tại điểm có hoành độ \(x_0\) là \(f'\left( {{x_0}} \right) = 3\).

Giải phương trình tìm \(x_0\), từ đó viết phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x = {x_0}\).

Lời giải chi tiết

Ta có: 

\(\begin{array}{l}
\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^3} - x_0^3}}{{x - {x_0}}}\\
= \mathop {\lim }\limits_{x \to {x_0}} \left( {{x^2} + x.{x_0} + x_0^2} \right) = x_0^2 + {x_0}.{x_0} + x_0^2 = 3x_0^2\\
\Rightarrow y'\left( {{x_0}} \right) = 3x_0^2
\end{array}\)

a) Ta có: \(y' (-1) = 3\).

Vậy phương trình tiếp tuyến tại điểm \((-1;-1)\) là: \(y = 3\left( {x + 1} \right) - 1 = 3x + 2\)

b) Ta có: \(y' (2) = 3.2^2=12\), \(y(2) =2^3= 8\).

Vậy phương trình tiếp tuyến tại điểm có hoành độ bằng \(2\) là: \(y = 12\left( {x - 2} \right) + 8 = 12x - 16\).

c) Gọi \(x_0\) là hoành độ tiếp điểm. Ta có: 

\(y' (x_0) = 3 \Leftrightarrow 3{x_0}^2= 3\Leftrightarrow {x_0}^2= 1\Leftrightarrow x_0= ±1\).

+) Với \(x_0= 1\) ta có \(y(1) = 1\), phương trình tiếp tuyến là \(y = 3\left( {x - 1} \right) + 1 = 3x - 2\)

+) Với \(x_0= -1\) ta có \(y(-1) = -1\), phương trình tiếp tuyến là \(y = 3\left( {x + 1} \right) - 1 = 3x + 2\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu



Các bài liên quan