Hoạt động 6 trang 82 Tài liệu dạy – học Toán 9 tập 1

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Cho tam giác đều ABC có cạnh bằng 2 dm. Gọi D là trung điểm BC. Tính độ dài AD, CD rồi

Đề bài

 

Cho tam giác đều ABC có cạnh bằng 2 dm. Gọi D là trung điểm BC. Tính độ dài AD, CD rồi dùng kết quả đó để tính tỉ số lượng giác của các góc \({30^0}\) và \({60^0}\).

Lời giải chi tiết

Ta có D là trung điểm BC \( \Rightarrow CD = \dfrac{1}{2}BC = 1\,dm\)

Áp dụng định lý Pythagore vào tam giác ADC vuông tại D có:

\(A{D^2} + C{D^2} = A{C^2}\\ \Rightarrow AD = \sqrt {A{C^2} - C{D^2}}  = \sqrt 3 \,\,dm\)

Xét tam giác ADC vuông tại D có:

\(\begin{array}{l}\sin {30^o} = \cos {60^o} = \dfrac{{CD}}{{AC}} = \dfrac{1}{2}\,\,;\\\cos {30^o} = \sin {60^o} = \dfrac{{AD}}{{AC}} = \dfrac{{\sqrt 3 }}{2}\\\tan {30^o} = \cot {60^o} = \dfrac{{CD}}{{AD}} = \dfrac{{\sqrt 3 }}{3}\,\,;\\\cot {30^o} = \tan {60^o} = \dfrac{{AD}}{{CD}} = \sqrt 3 \end{array}\)

Loigiaihay.com

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Gửi văn hay nhận ngay phần thưởng