Hoạt động 6 trang 64 Tài liệu dạy – học Toán 8 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Cho tam giác ABC có AB = 6cm, AC = 8 cm và BC = 10 cm.

Đề bài

Cho tam giác ABC  có AB = 6cm, AC = 8 cm và BC = 10 cm.

Lấy điểm B’ trên AB sao cho AB’ = 2 cm, qua B’ vẽ đường thẳng song song với BC và cắt AC tại C’.

a) Tính AC’

b) Qua C’ vẽ đường thẳng song song với AB và cắt BC tại D. Tính BD, B’C’.

c) Tính và so sánh các tỉ số: \({{AB'} \over {AB}}\,\,,\,\,{{AC'} \over {AC}}\,\,,\,\,{{B'C'} \over {BC}}\)

Lời giải chi tiết

a) ∆ABC có \(B'C'//BC(gt)\)

\(\Rightarrow \dfrac{{AC'}}{{AC}} = \dfrac{{AB'}}{{AB}}\) (Định lí Thales)

Do đó \(\dfrac{{AC'}}{8} = \dfrac{2}{6} \Rightarrow AC' = \dfrac{2}{6}.8 = \dfrac{8}{3}(cm)\)

b) ∆ABC có \(C'D//AB(gt)\)

\(\Rightarrow \dfrac{{BD}}{{BC}} = \dfrac{{AC'}}{{AC}}\) (Định lí Thales)

Do đó \(\dfrac{{B{\text{D}}}}{{10}} = \dfrac{{\dfrac{8}{3}}}{8} \Rightarrow BD = \dfrac{1}{3}.10 = \dfrac{{10}}{3}(cm)\)

Tứ giác BB’C’D có BB’//DC’, B’C’//BD

\( \Rightarrow \) Tứ giác BB’C’D là hình bình hành \( \Rightarrow B'C' = BD = \dfrac{10}{ 3}(cm)\)

c) 

\(\dfrac{{AB'}}{{AB}} = \dfrac{2}{6} = \dfrac{1}{3};\)

\(\dfrac{{AC'}}{{AC}} = \dfrac{{\dfrac{8}{3}}}{8} = \dfrac{1}{3};\)

\(\dfrac{{B'C'}}{{BC}} = \dfrac{{\dfrac{{10}}{3}}}{{10}} = \dfrac{1}{3}\)

Vậy \(\dfrac{{AB'}}{{AB}} = \dfrac{{AC'}}{{AC}} = \dfrac{{BC'}}{{BC}}\)

Loigiaihay.com

>>Học trực tuyến lớp 8 trên Tuyensinh247.com mọi lúc, mọi nơi đầy đủ các môn: Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các thầy cô giáo dạy giỏi, nổi tiếng.

Gửi văn hay nhận ngay phần thưởng