Hoạt động 6 trang 64 Tài liệu dạy – học Toán 8 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Cho tam giác ABC có AB = 6cm, AC = 8 cm và BC = 10 cm.

Đề bài

Cho tam giác ABC  có AB = 6cm, AC = 8 cm và BC = 10 cm.

Lấy điểm B’ trên AB sao cho AB’ = 2 cm, qua B’ vẽ đường thẳng song song với BC và cắt AC tại C’.

a) Tính AC’

b) Qua C’ vẽ đường thẳng song song với AB và cắt BC tại D. Tính BD, B’C’.

c) Tính và so sánh các tỉ số: \({{AB'} \over {AB}}\,\,,\,\,{{AC'} \over {AC}}\,\,,\,\,{{B'C'} \over {BC}}\)

Lời giải chi tiết

a) ∆ABC có \(B'C'//BC(gt)\)

\(\Rightarrow \dfrac{{AC'}}{{AC}} = \dfrac{{AB'}}{{AB}}\) (Định lí Thales)

Do đó \(\dfrac{{AC'}}{8} = \dfrac{2}{6} \Rightarrow AC' = \dfrac{2}{6}.8 = \dfrac{8}{3}(cm)\)

b) ∆ABC có \(C'D//AB(gt)\)

\(\Rightarrow \dfrac{{BD}}{{BC}} = \dfrac{{AC'}}{{AC}}\) (Định lí Thales)

Do đó \(\dfrac{{B{\text{D}}}}{{10}} = \dfrac{{\dfrac{8}{3}}}{8} \Rightarrow BD = \dfrac{1}{3}.10 = \dfrac{{10}}{3}(cm)\)

Tứ giác BB’C’D có BB’//DC’, B’C’//BD

\( \Rightarrow \) Tứ giác BB’C’D là hình bình hành \( \Rightarrow B'C' = BD = \dfrac{10}{ 3}(cm)\)

c) 

\(\dfrac{{AB'}}{{AB}} = \dfrac{2}{6} = \dfrac{1}{3};\)

\(\dfrac{{AC'}}{{AC}} = \dfrac{{\dfrac{8}{3}}}{8} = \dfrac{1}{3};\)

\(\dfrac{{B'C'}}{{BC}} = \dfrac{{\dfrac{{10}}{3}}}{{10}} = \dfrac{1}{3}\)

Vậy \(\dfrac{{AB'}}{{AB}} = \dfrac{{AC'}}{{AC}} = \dfrac{{BC'}}{{BC}}\)

Loigiaihay.com

Các bài liên quan: - 2. Định lí đảo và hệ quả của định lí Thales

>>Học trực tuyến các môn học lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu