Hoạt động 6 trang 64 Tài liệu dạy – học Toán 8 tập 2


Giải bài tập Cho tam giác ABC có AB = 6cm, AC = 8 cm và BC = 10 cm.

Đề bài

Cho tam giác ABC  có AB = 6cm, AC = 8 cm và BC = 10 cm.

Lấy điểm B’ trên AB sao cho AB’ = 2 cm, qua B’ vẽ đường thẳng song song với BC và cắt AC tại C’.

a) Tính AC’

b) Qua C’ vẽ đường thẳng song song với AB và cắt BC tại D. Tính BD, B’C’.

c) Tính và so sánh các tỉ số: \({{AB'} \over {AB}}\,\,,\,\,{{AC'} \over {AC}}\,\,,\,\,{{B'C'} \over {BC}}\)

Lời giải chi tiết

a) ∆ABC có \(B'C'//BC(gt)\)

\(\Rightarrow \dfrac{{AC'}}{{AC}} = \dfrac{{AB'}}{{AB}}\) (Định lí Thales)

Do đó \(\dfrac{{AC'}}{8} = \dfrac{2}{6} \Rightarrow AC' = \dfrac{2}{6}.8 = \dfrac{8}{3}(cm)\)

b) ∆ABC có \(C'D//AB(gt)\)

\(\Rightarrow \dfrac{{BD}}{{BC}} = \dfrac{{AC'}}{{AC}}\) (Định lí Thales)

Do đó \(\dfrac{{B{\text{D}}}}{{10}} = \dfrac{{\dfrac{8}{3}}}{8} \Rightarrow BD = \dfrac{1}{3}.10 = \dfrac{{10}}{3}(cm)\)

Tứ giác BB’C’D có BB’//DC’, B’C’//BD

\( \Rightarrow \) Tứ giác BB’C’D là hình bình hành \( \Rightarrow B'C' = BD = \dfrac{10}{ 3}(cm)\)

c) 

\(\dfrac{{AB'}}{{AB}} = \dfrac{2}{6} = \dfrac{1}{3};\)

\(\dfrac{{AC'}}{{AC}} = \dfrac{{\dfrac{8}{3}}}{8} = \dfrac{1}{3};\)

\(\dfrac{{B'C'}}{{BC}} = \dfrac{{\dfrac{{10}}{3}}}{{10}} = \dfrac{1}{3}\)

Vậy \(\dfrac{{AB'}}{{AB}} = \dfrac{{AC'}}{{AC}} = \dfrac{{BC'}}{{BC}}\)

Loigiaihay.com


Bình chọn:
3.8 trên 4 phiếu

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí