Hoạt động 6 trang 47 Tài liệu dạy – học Toán 9 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Từ bảng kết luận về công thức nghiệm của phương trình bậc hai,

Đề bài

Từ bảng kết luận về công thức nghiệm của phương trình bậc hai, thay b = 2b’ và \(\Delta  = 4\Delta '\) , hãy điền vào chỗ chấm.

Đối với phương trình \(a{x^2} + bx + c = 0(a \ne 0)\)và b = 2b’, \(\Delta ' = b{'^2} - ac\)

a) Nếu \(\Delta ' > 0\) thì từ phương trình có hai nghiệm phân biệt

x1 = …………….; x2 = …………….

b) Nếu \(\Delta ' = 0\) thì phương trình có nghiệm kép x1 = x2 =  …………………

c) Nếu \(\Delta ' < 0\) thì …………………….

Lời giải chi tiết

Đối với phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) và \(b = 2b’\), \(\Delta ' = b{'^2} - ac\)

a) Nếu \(\Delta ' > 0\) thì từ phương trình có hai nghiệm phân biệt \({x_1} = \dfrac{{ - b' + \sqrt {\Delta '} }}{a};{x_2} = \dfrac{{ - b' - \sqrt {\Delta '} }}{a}\)

b) Nếu \(\Delta ' = 0\) thì phương trình có nghiệm kép \({x_1} = {x_2} = \dfrac{{ - b'}}{a}\)

c) Nếu \(\Delta ' < 0\) thì phương trình vô nghiệm.

Loigiaihay.com

Các bài liên quan: - 3. Công thức nghiệm thu gọn

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com