Bài 53 trang 15 SBT toán 9 tập 2


Giải bài 53 trang 15 sách bài tập toán 9. Tìm các giá trị của a và b để hệ phương trình: ax + by = 3 và 2ax - 3by = 36 có nghiệm là (3; -2).

Đề bài

Tìm các giá trị của \(a\) và \(b\) để hệ phương trình:

\(\left\{ {\matrix{
{ax + by = 3} \cr 
{2ax - 3by = 36} \cr} } \right.\)

có nghiệm là \((3; -2).\)

Phương pháp giải - Xem chi tiết

Sử dụng:

- Cặp số \(({x_0};{y_0})\) là nghiệm của hệ phương trình 

\(\left\{ {\matrix{
{ax + by = c} \cr 
{a'x +b'y = c'} \cr} } \right.\)

\( \Leftrightarrow \left\{ {\matrix{
{a{x_0} + b{y_0} = c} \cr 
{a'{x_0} +b'{y_0}  = c'} \cr} } \right.\)

Lời giải chi tiết

Cặp \((x; y) = (3; -2)\) là nghiệm của hệ phương trình nên thay \(x=3;y=-2\) vào hệ đã cho, ta có:

\(\eqalign{
& \left\{ {\matrix{
{3a - 2b = 3} \cr 
{2a.3 - 3b.(-2) = 36} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{3a - 2b = 3} \cr 
{6a + 6b = 36} \cr
} } \right.\Leftrightarrow \left\{ {\matrix{
{3a - 2b = 3} \cr 
{2a + 2b = 12} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{5a = 15} \cr 
{3a - 2b = 3} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{a = 3} \cr 
{3.3 - 2b = 3} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{a = 3} \cr 
{b = 3} \cr} } \right. \cr} \)

Vậy \(a = 3; b = 3.\)

Loigiaihay.com


Bình chọn:
4 trên 6 phiếu

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài