Bài 43 trang 163 SBT toán 9 tập 1


Đề bài

Cho điểm \(A\) nằm trên đường thẳng \(d,\) điểm \(B\) nằm ngoài đường thẳng \(d.\) Dựng đường tròn \((O)\) đi qua  \(A\) và \(B,\) nhận đường thẳng \(d\) làm tiếp tuyến.

Phương pháp giải - Xem chi tiết

* Phân tích: 

+) Giả sử đã có một hình thỏa mãn điều kiện bài toán

+) Chọn ra các yếu tố dựng được ngay (đoạn thẳng, tam giác,...)

+) Đưa việc dựng các điểm còn lại về các phép dựng hình cơ bản và các bài toán dựng hình cơ bản (Mỗi điểm thường được xác định là giao của hai đường.)

* Cách dựng: Nêu thứ tự từng bước dựng hình, đồng thời thể hiện các nét dựng trên hình vẽ.

* Chứng minh: Bằng lập luận để chứng tỏ rằng với cách dựng trên, hình đã dựng thỏa mãn các điều kiện của đề bài nêu ra.

* Biện luận: Xem xét khi nào bài toán dựng được và dựng được bao nhiêu hình thỏa mãn đề bài

Lời giải chi tiết

Phân tích

−  Giả sử dựng được đường tròn \((O)\) qua \(A,\) \(B\) và tiếp xúc với \(d.\) Khi đó đường tròn \((O)\) phải tiếp xúc với \(d\) tại \(A.\)

−  Đường tròn \((O)\) đi qua \(A\) và \(B\) nên tâm \(O\) nằm trên đường trung trực của \(AB.\)

−  Đường tròn \((O)\) tiếp xúc với \(d\) tại \(A\) nên điểm \(O\) nằm trên đường thẳng vuông góc với \(d\) tại điểm \(A.\)

Cách dựng

−  Dựng đường thẳng trung trực của \(AB.\)

−   Dựng đường thẳng đi qua \(A\) và vuông góc với \(d.\) Đường thẳng này cắt đường trung trực của \(AB\) tại \(O.\)

−  Dựa đường tròn \(( O; OA)\) ta được đường tròn cần dựng.

Chứng minh

Vì \(O\) nằm trên đường trung trực của \(AB\) nên \(OA = OB.\) Khi đó đường tròn \((O; OA)\) đi qua hai điểm \(A\) và \(B.\)

Ta có: \(OA\) vuông góc với \(d\) tại \(A\) nên \(d\) là tiếp tuyến của \((O).\)

Vậy \((O)\) thỏa mãn điều kiện bài toán.

* Biện luận: Ta luôn dựng được một đường tròn thỏa mãn điều kiện của đề bài.

Loigiaihay.com


Bình chọn:
4 trên 7 phiếu
  • Bài 44 trang 163 SBT toán 9 tập 1

    Giải bài 44 trang 163 sách bài tập toán 9. Cho tam giác ABC vuông tại A. Vẽ đường tròn (B ; BA) và đường tròn (C ; CA), chúng cắt nhau tại điểm D (khác A). Chứng minh rằng CD là tiếp tuyến của đường tròn (B).

  • Bài 45* trang 163 SBT toán 9 tập 1

    Giải bài 45* trang 163 sách bài tập toán 9. Cho tam giác ABC cân tại A, các đường cao AD và BE cắt nhau tại H. Vẽ đường tròn (O) có đường kính AH. Chứng minh rằng:...

  • Bài 46 trang 163 SBT toán 9 tập 1

    Giải bài 46 trang 163 sách bài tập toán 9. Cho góc nhọn xOy, điểm A thuộc tia Ox. Dựng đường tròn tâm I tiếp xúc với Ox tại A và có tâm I nằm trên tia Oy.

  • Bài 47 trang 163 SBT toán 9 tập 1

    Giải bài 47 trang 163 sách bài tập toán 9. Cho đường tròn (O) và đường thẳng d không giao nhau. Dựng tiếp tuyến của đường tròn (O) sao cho tiếp tuyến đó song song với d.

  • Bài 5.1 phần bài tập bổ sung trang 164 SBT toán 9 tập 1

    Giải bài 5.1 phần bài tập bổ sung trang 164 sách bài tập toán 9. Xét tính đúng – sai của mỗi khẳng định sau:...

  • Bài 5.2 phần bài tập bổ sung trang 164 SBT toán 9 tập 1

    Giải bài 5.2 phần bài tập bổ sung trang 164 sách bài tập toán 9. Cho đường tròn (O) đường kính AB, dây CD vuông góc với OA tại trung điểm của OA. Gọi M là điểm đối xứng với O qua A. Chứng minh rằng MC là tiếp tuyến của đường tròn.

  • Bài 42 trang 163 SBT toán 9 tập 1

    Giải bài 42 trang 163 sách bài tập toán 9. Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Dùng thước và compa, hãy dựng các điểm B và C thuộc đường tròn (O) sao cho AB và AC là các tiếp tuyến của đường tròn (O).

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.