Bài 33 trang 10 SBT toán 8 tập 1


Giải bài 33 trang 10 sách bài tập toán 8. Tính nhanh giá trị của mỗi đa thức...

Lựa chọn câu để xem lời giải nhanh hơn

Tính nhanh giá trị của mỗi đa thức

LG a

\(\) \({x^2} - 2xy - 4{z^2} + {y^2}\)  tại \(x = 6;y =  - 4\)  và \(z = 45\)

Phương pháp giải:

+) Rút gọn biểu thức: Nhóm các hạng tử một cách thích hợp để xuất hiện hằng đẳng thức. 

+) Thay giá trị \(x,y,z\) vào biểu thức sau khi rút gọn

Lời giải chi tiết:

\(\) \({x^2} - 2xy - 4{z^2} + {y^2}\)

\( = \left( {{x^2} - 2xy + {y^2}} \right) - 4{z^2}\)

\( = {\left( {x - y} \right)^2} - {\left( {2z} \right)^2}\)

\( = \left( {x - y + 2z} \right)\left( {x - y - 2z} \right)\)

Thay \(x = 6;y =  - 4;z = 45\) vào biểu thức, ta có:

\(\left[ {6 -(- 4) + 2.45} \right]\left[ {6 -(-4) - 2.45} \right] \)

\(=\left( {6 + 4 + 90} \right)\left( {6 + 4 - 90} \right) \) 

\(= 100.\left( { - 80} \right) =  - 8000\)

LG b

\(\) \(3\left( {x - 3} \right)\left( {x + 7} \right) + {\left( {x - 4} \right)^2} + 48\)  tại \(x = 0,5\)

Phương pháp giải:

+) Rút gọn biểu thức:  Sử dụng phương pháp nhân đa thức với đa thức, nhóm các hạng tử lại với nhau để xuất hiện hằng đẳng thức.

+) Thay giá trị \(x\) vào biểu thức sau khi rút gọn

Lời giải chi tiết:

\(\) \(3\left( {x - 3} \right)\left( {x + 7} \right) + {\left( {x - 4} \right)^2} + 48\)

\( = 3\left( {{x^2} + 7x - 3x - 21} \right) \)\(+ {x^2} - 8x + 16 + 48  \)

\( = 3{x^2} + 12x - 63 + {x^2} - 8x + 64 \)

\(= 4{x^2} + 4x + 1 \)

\(= {\left( {2x + 1} \right)^2} \)

Thay \(x = 0,5\) vào biểu thức ta có: \({\left( {2.0,5 + 1} \right)^2} = {\left( {1 + 1} \right)^2} = 4\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.7 trên 45 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài