Bài 25 trang 67 SBT toán 9 tập 1


Giải bài 25 trang 67 sách bài tập toán 9. Tìm hệ số góc của đường thẳng đi qua gốc tọa độ và đi qua điểm A(2;1) ;...

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Tìm hệ số góc của đường thẳng đi qua gốc tọa độ và đi qua điểm \(A(2;1) ;\)

Phương pháp giải:

Đường thẳng đi qua gốc tọa độ có dạng \(y = ax\)

Điểm \(M(x_0;y_0)\) thuộc đồ thị hàm số \(y=ax+b\) khi \(y_0=ax_0+b\)

Lời giải chi tiết:

Đường thẳng đi qua gốc tọa độ có dạng \(y = ax\)

Vì đường thẳng \(y = ax \) đi qua  điểm A(2;1) nên tọa độ điểm A nghiệm đúng với phương trình đường thẳng.

Ta có : \(1 = a.2 \Leftrightarrow a = \dfrac{1}{2}\)

Vậy hệ số góc mà đường thẳng đi qua gốc tọa độ và đi qua điểm \(A(2;1)\) là \(a = \dfrac{1}{2}\).

LG b

Tìm hệ số của đường thẳng đi qua gốc tọa độ và đi qua điểm \(B(1;-2) ;\)

Phương pháp giải:

Đường thẳng đi qua gốc tọa độ có dạng \(y = ax\)

Điểm \(M(x_0;y_0)\) thuộc đồ thị hàm số \(y=ax+b\) khi \(y_0=ax_0+b\)

Lời giải chi tiết:

Đường thẳng đi qua gốc tọa độ có dạng \(y = ax\) 

Vì đường thẳng \(y = ax\) đi qua điểm \(B(1;-2)\) nên tọa độ điểm \(B\) nghiệm đúng phương trình đường thẳng.

Ta có: \(- 2 = a.1 \Leftrightarrow a =  - 2\) 

Vậy hệ số góc của đường thẳng đi qua gốc tọa độ và đi qua điểm B(1;-2) là \(a = -2.\)

LG c

Vẽ đồ thị của các hàm số với hệ số góc tìm được ở các câu a) , b) trên cùng một mặt phẳng tọa độ và chứng tỏ rằng hai đường thẳng đó vuông góc với nhau.

Phương pháp giải:

Xác định hai điểm thuộc đồ thị hàm số \(y=ax+b,\) sau đó vẽ đường thẳng đi qua hai điểm đó ta được đồ thị cần tìm.

Lời giải chi tiết:

Với \(a = \dfrac{1 }{2}\) ta có hàm số: \(y = \dfrac{1 }{2}x\)

Với \(a = -2\) ta có hàm số : \(y =  - 2x\)

*) Vẽ đồ thị hàm số \(y =  \dfrac{1}{ 2}x\)

Cho \(x = 0\) thì \(y = 0\). Ta có:  \(O(0;0)\)

Cho \(x = 2\) thì \(y = 1\). Ta có:  \(A(2;1)\)

Đồ thị hàm số \(y = \dfrac{1}{2}x\) đi qua O và A.

*) Vẽ đồ thị hàm số \(y = -2x\)

Cho \(x = 0\) thì \(y = 0\). Ta có : \(O(0;0)\)

Cho \(x = 1\) thì \(y = -2\) . Ta có : \(B(1;-2)\)

Đồ thị hàm số \(y = -2x\) đi qua điểm O và B.

*Gọi A’, B’ lần lượt là hình chiếu của A, B trên Ox, Oy.

Ta có hai tam giác AA’O và BB’O có hai cạnh góc vuông tương ứng bằng nhau nên chúng bằng nhau.

Suy ra : \(\widehat {AOA'} = \widehat {BOB'}\)  (1)

Vì \({\rm{Ox}} \bot {\rm{Oy}}\) nên \(\widehat {BOA'} + \widehat {BOB'} = {90^0}\)  (2)

Từ (1) và (2) suy ra : \(\widehat {BOA'} + \widehat {AOA'} = {90^0}\)

Suy ra \(OA \bot OB\) hay hai đường thẳng \(y = \dfrac{1}{2}x\) và \(y = -2x\) vuông góc với nhau.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.5 trên 8 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài