Bài 2.27 trang 92 SBT hình học 10


Giải bài 2.27 trang 92 sách bài tập hình học 10. Trong mặt phẳng Oxy cho hai điểm...

Đề bài

Trong mặt phẳng Oxy cho hai điểm A(5;4) và B(3;-2). Một điểm M di động trên trục hoành Ox. Tìm giá trị nhỏ nhất của \(\left| {\overrightarrow {MA}  + \overrightarrow {MB} } \right|\).

Phương pháp giải - Xem chi tiết

Sử dụng tính chất trung điểm, gọi \(I\) là trung điểm \(AB\), tính \(\left| {\overrightarrow {MA}  + \overrightarrow {MB} } \right|\) và đánh giá GTNN của biểu thức.

Lời giải chi tiết

Gọi I là trung điểm của đoạn AB, ta có I(4;1)

Vì \(\overrightarrow {MA}  + \overrightarrow {MB}  = 2\overrightarrow {MI} \) nên \(\left| {\overrightarrow {MA}  + \overrightarrow {MB} } \right| = 2\left| {\overrightarrow {MI} } \right|\) nhỏ nhất khi giá trị của đoạn IM nhỏ nhất.

Điểm M chạy trên trục Ox nên có tọa độ dạng M(x; 0).

Do đó: \(\left| {\overrightarrow {IM} } \right| = \sqrt {{{(x - 4)}^2} + 1}  \ge 1\)

Dấu “=” xảy ra khi x = 4.

Vậy giá trị nhỏ nhất của \(\left| {\overrightarrow {MA}  + \overrightarrow {MB} } \right|\) là 2 khi M có tọa độ là M(4;0)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài