Bài 2.25 trang 92 SBT hình học 10


Đề bài

Trong mặt phẳng Oxy cho bốn điểm \(A( - 1;1),B(0;2),C(3;1)\) và \(D(0; - 2)\). Chứng minh rằng tứ giác ABCD là hình thang cân.

Phương pháp giải - Xem chi tiết

Ta chứng minh \(DC = k\overrightarrow {AB} \left( {k \ne 1} \right)\) và \(\left| {\overrightarrow {AD} } \right| = \left| {\overrightarrow {BC} } \right|\)

Lời giải chi tiết

Ta có: \(\overrightarrow {AB}  = (1;1),\overrightarrow {DC}  = (3;3)\).

Vậy \(\overrightarrow {DC}  = 3\overrightarrow {AB} \), ta suy ra DC // AB và DC = 3AB.

Mặt khác \(\left| {\overrightarrow {AD} } \right| = \sqrt {{1^2} + {3^2}} \) và \(\left| {\overrightarrow {BC} } \right| = \sqrt {{3^2} + {1^2}} \)

Nên ABCD là hình thang cân có hai cạnh bên AD và BC bằng nhau, còn hai đáy là AB và CD trong đó đáy lớn CD dài gấp 3 lần đáy nhỏ AB.

Loigiaihay.com


Bình chọn:
4 trên 5 phiếu

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.