Bài 2.16 trang 91 SBT hình học 10


Giải bài 2.16 trang 91 sách bài tập hình học 10. Cho tam giác ABC có ...

Lựa chọn câu để xem lời giải nhanh hơn

Cho tam giác \(ABC\) có \(AB = 5 cm, BC = 7 cm, CA = 8 cm\).

LG a

Tính \(\overrightarrow {AB} .\overrightarrow {AC} \) rồi suy ra giá trị của góc \(A\);

Phương pháp giải:

Sử dụng đẳng thức véc tơ \({\overrightarrow {BC} ^2} = {\left( {\overrightarrow {AC}  - \overrightarrow {AB} } \right)^2}\) để tính toán.

Giải chi tiết:

Ta có: \(B{C^2} = {\overrightarrow {BC} ^2} = {\left( {\overrightarrow {AC}  - \overrightarrow {AB} } \right)^2}\)\( = {\overrightarrow {AC} ^2} + {\overrightarrow {AB} ^2} - 2\overrightarrow {AC} .\overrightarrow {AB} \)

Do đó \(\overrightarrow {AB} .\overrightarrow {AC}  = \dfrac{{{{\overrightarrow {AC} }^2} + {{\overrightarrow {AB} }^2} - {{\overrightarrow {BC} }^2}}}{2}\)\( = \dfrac{{{8^2} + {5^2} - {7^2}}}{2} = 20\)

Mặt khác \(\overrightarrow {AB} .\overrightarrow {AC}  = AB.AC.cosA\)\( \Rightarrow 5.8.cosA = 20\)

Suy ra \(\cos A = \dfrac{{20}}{{40}} = \dfrac{1}{2} \Rightarrow \widehat A = {60^0}\)

LG b

Tính \(\overrightarrow {CA} .\overrightarrow {CB} \).

Phương pháp giải:

Sử dụng đẳng thức véc tơ \({\overrightarrow {BA} ^2} = {\left( {\overrightarrow {CA}  - \overrightarrow {CB} } \right)^2}\) để tính toán.

Giải chi tiết:

Ta có: \(B{A^2} = {\overrightarrow {BA} ^2}\)\( = {\left( {\overrightarrow {CA}  - \overrightarrow {CB} } \right)^2} = {\overrightarrow {CA} ^2} + {\overrightarrow {CB} ^2} - 2\overrightarrow {CA} .\overrightarrow {CB} \)

Do đó \(\overrightarrow {CA} .\overrightarrow {CB}  = \dfrac{1}{2}\left( {{{\overrightarrow {CA} }^2} + {{\overrightarrow {CB} }^2} - {{\overrightarrow {BA} }^2}} \right)\)\( = \dfrac{1}{2}\left( {{8^2} + {7^2} - {5^2}} \right) = 44\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài