Câu 54 trang 124 Sách bài tập Hình học 11 Nâng cao


Giải bài tập Câu 54 trang 124 Sách bài tập Hình học 11 Nâng cao

Đề bài

Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Xét tứ diện AB’CD’. Cắt tứ diện đó bằng mặt phẳng đi qua tâm của hình lập phương và song song với mp(ABC). Tính diện tích thiết diện thu được. Hãy xét kết quả của toán khi ABCD.A’B’C’D’ là hình hộp chữ nhật với ba kích thước là a, b, c.

Lời giải chi tiết

 

Vì hình ABCD.A’B’C’D’ là hình lập phương nên AB’CD’ là tứ diện đều có cạnh \(a\sqrt 2 \) (a là cạnh của hình lập phương). Dễ thấy thiết diện là tứ giác MNPQ, trong đó M, N, P, Q lần lượt là trung điểm của các cạnh AB’, AD’, D’C, B’C. Do AB’CD’ là tứ diện đều nên \(B'D' \bot AC\).

Vậy tứ giác MNPQ là hình vuông cạnh bằng \({{a\sqrt 2 } \over 2}\). Từ đó \({S_{MNPQ}} = {{{a^2}} \over 2}\)

Chú ý. Có thể chiếu tứ giác MNPQ xuống mặt phẳng (ABCD) theo phương chiếu A’A được tứ giác \({M_1}{N_1}{P_1}{Q_1}\) trong đó \({M_1},{N_1},{P_1},{Q_1}\) lần lượt là trung điểm của AB, AD, CD, BC và

\({S_{MNPQ}} = {S_{{M_1}{N_1}{P_1}{Q_1}}} = {1 \over 2}{S_{ABC{\rm{D}}}} = {{{a^2}} \over 2}\).

Nếu hình lập phương ABCD.A’B’C’D’ được thay bởi hình hộp chữ nhật với \(AB = a,BC = b,AA' = c\) thì thiết diện thu được vẫn là tứ giác MNPQ và MNPQ là hình thoi có độ dài hai đường chéo MP và NQ lần lượt là b, a. Do đó:

\({S_{MNPQ}} = {{ab} \over 2}\).

Chú ý. Thực hiện như phần chú ý ở trên thì

\({S_{MNPQ}} = {S_{{M_1}{N_1}{P_1}{Q_1}}} = {1 \over 2}{S_{ABC{\rm{D}}}} = {{ab} \over 2}\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí