Câu 52 trang 124 Sách bài tập Hình học 11 Nâng cao


Đề bài

Cho hình lập phương ABCD.A’B’C’D’ cạnh a.

a) Tính góc tạo bởi hai đường thẳng AC’ và A’B.

b) Gọi M, N, P lần lượt là trung điểm của các cạnh A’B’, BC, DD’. Chứng minh rằng AC’ vuông góc với mp(MNP).

Lời giải chi tiết

 

a) Ta có \(C'B' \bot \left( {ABB'A'} \right),B'A \bot A'B\) nên \(A'B \bot AC'\) (định lí ba đường vuông góc).

Vậy góc giữa AC’ và A’B bằng 90°.

b) Ta có

\(\eqalign{  & N{P^2} = N{C^2} + C{{\rm{D}}^2} + D{P^2}  \cr  &  = {{{a^2}} \over 4} + {a^2} + {{{a^2}} \over 4} = {{3{{\rm{a}}^2}} \over 2} \cr} \)

Tương tự ta cũng có \(M{N^2} = M{P^2} = {{3{{\rm{a}}^2}} \over 2}\)

Vậy MNP là tam giác đều.

Mặt khác:

\(\eqalign{  & A{N^2} = A{P^2} = A{M^2} = {{5{{\rm{a}}^2}} \over 4}  \cr  & C'{N^2} + C'{P^2} = C'{M^2} = {{5{{\rm{a}}^2}} \over 4} \cr} \)

Từ đó \(AC' \bot \left( {MNP} \right)\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.