Câu 30 trang 119 Sách bài tập Hình học 11 Nâng cao


Giải bài tập Câu 30 trang 119 Sách bài tập Hình học 11 Nâng cao

Đề bài

Cho hình chóp S.ABDC có đáy là hình thoi cạnh a. cạnh bên SA vuông góc với mp(ABCD), SA = a và \(\widehat {ABC} = {60^0}\).

a) Tính độ dài các cạnh SB, SC, SD.

b) Gọi I là trung điểm của SC. Chứng minh rằng IB = ID.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

 

a) Ta có \(SB = S{\rm{D}} = a\sqrt 2 ,AC = a\). (Vì ABC là tam giác cân mà \(\widehat {ABC} = {60^0}\))

Vậy \(SC = a\sqrt 2 \).

b) Gọi \(O = AC \cap B{\rm{D}}\) thì IO //SA nên \(I{\rm{O}} \bot \left( {ABC{\rm{D}}} \right)\), từ đó \(I{\rm{O}} \bot B{\rm{D}}\).

Mặt khác OB = OD nên BID là tam giác cân tại I, tức là IB = ID.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí