Câu 30 trang 119 Sách bài tập Hình học 11 Nâng cao


Giải bài tập Câu 30 trang 119 Sách bài tập Hình học 11 Nâng cao

Đề bài

Cho hình chóp S.ABDC có đáy là hình thoi cạnh a. cạnh bên SA vuông góc với mp(ABCD), SA = a và \(\widehat {ABC} = {60^0}\).

a) Tính độ dài các cạnh SB, SC, SD.

b) Gọi I là trung điểm của SC. Chứng minh rằng IB = ID.

Lời giải chi tiết

 

a) Ta có \(SB = S{\rm{D}} = a\sqrt 2 ,AC = a\). (Vì ABC là tam giác cân mà \(\widehat {ABC} = {60^0}\))

Vậy \(SC = a\sqrt 2 \).

b) Gọi \(O = AC \cap B{\rm{D}}\) thì IO //SA nên \(I{\rm{O}} \bot \left( {ABC{\rm{D}}} \right)\), từ đó \(I{\rm{O}} \bot B{\rm{D}}\).

Mặt khác OB = OD nên BID là tam giác cân tại I, tức là IB = ID.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài