
Đề bài
Trong mặt phẳng (P), cho hình thoi ABCD với \(AB = a,AC = {{2{\rm{a}}\sqrt 6 } \over 3}\). Trên đường thẳng vuông góc với mặt phẳng (P) tại giao điểm tại O của hai đường chéo hình thoi, ta lấy điểm S sao cho SB = a. Chứng minh rằng:
a) Tam giác ASC vuông.
b) Mặt phẳng (SAB) và mặt phẳng (SAD) vuông góc với nhau.
Lời giải chi tiết
a) Ta có \(A{C^2} + B{{\rm{D}}^2} = 4{{\rm{a}}^2},AC = {{2{\rm{a}}\sqrt 6 } \over 3}\)
nên \(B{{\rm{D}}^2} = {{4{{\rm{a}}^2}} \over 3} \Rightarrow O{B^2} = {{{a^2}} \over 3}\)
Xét tam giác vuông SOB, ta có
\(S{O^2} = S{B^2} - O{B^2} = {{2{{\rm{a}}^2}} \over 3} \Rightarrow SO = {{a\sqrt 6 } \over 3}\)
Vậy tam giác SAC có trung tuyến SO bằng nửa AC nên SAC là tam giác vuông tại S.
b) Trong mặt phẳng (SOA) kẻ OA1 vuông góc với SA thì \(SA \bot mp\left( {{A_1}B{\rm{D}}} \right)\), từ đó \(\widehat {B{A_1}D}\) hoặc \({180^0} - \widehat {B{A_1}D}\), là góc giữa hai mặt phẳng (SAB) và (SAD).
Ta có
\(\eqalign{ & O{A_1} = {{OA.OS} \over {SA}} = {{OA.OS} \over {\sqrt {O{A^2} + O{S^2}} }} \cr & = {1 \over 2}.{{a\sqrt 6 } \over 3}.\sqrt 2 = {{a\sqrt 3 } \over 3} \cr} \)
Mặt khác \(B{\rm{D}} = {{2a\sqrt 3 } \over 3}\), từ đó \(\widehat {B{A_1}D} = {90^0}\) hay hai mặt phẳng (SAB) và (SAD) vuông góc.
Loigiaihay.com
Giải bài tập Câu 47 trang 123 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 48 trang 123 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 49 trang 123 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 50 trang 123 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 51 trang 124 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 52 trang 124 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 53 trang 124 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 54 trang 124 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 55 trang 124 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 45 trang 122 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 44 trang 122 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 43 trang 122 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 42 trang 122 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 41 trang 122 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 40 trang 121 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 39 trang 121 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 38 trang 121 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 37 trang 121 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 36 trang 121 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 35 trang 120 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 34 trang 120 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 33 trang 120 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 32 trang 120 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 31 trang 120 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 30 trang 119 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 29 trang 119 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 28 trang 119 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 27 trang 119 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 26 trang 119 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 25 trang 119 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 24 trang 118 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 23 trang 118 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 22 trang 118 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 21 trang 118 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 20 trang 118 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 19 trang 118 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 18 trang 117 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 17 trang 117 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 16 trang 117 Sách bài tập Hình học 11 Nâng cao
>> Xem thêm
Các bài khác cùng chuyên mục
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: