Câu 45 trang 122 Sách bài tập Hình học 11 Nâng cao


Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa - GDCD

Đề bài

Cho tứ diện ABCD có cạnh AD vuông góc với mp(DBC). Gọi AE, BF là hai đường cao của tam giác ABC; H và K lần lượt là trực tâm của tam giác ABC và tam giác DBC. Chứng minh rằng:

a) \(mp\left( {A{\rm{D}}E} \right) \bot mp\left( {ABC} \right)\) và \(mp\left( {BFK} \right) \bot mp\left( {ABC} \right)\).

b) \(HK \bot mp\left( {ABC} \right)\)

Lời giải chi tiết

 

a) Vì \(A{\rm{D}} \bot \left( {DBC} \right)\) nên \(A{\rm{D}} \bot BC\).

Mặt khác \(A{\rm{E}} \bot BC\). Vậy \(BC \bot \left( {A{\rm{D}}E} \right)\), từ đó ta có \(\left( {ABC} \right) \bot \left( {A{\rm{D}}E} \right)\).

Vì K là trực tâm tam giác DBC nên \(BK \bot AC\). Theo giả thiết \(A{\rm{D}} \bot \left( {DBC} \right)\), vậy \(BK \bot AC\) (định lí ba đường vuông góc). Kết hợp với \(BF \bot AC\) ta có \(AC \bot \left( {BFK} \right)\), từ đó \(mp\left( {ABC} \right) \bot mp\left( {BFK} \right)\).

b) Từ câu a), ta có

\(\eqalign{  & mp\left( {BFK} \right) \bot mp\left( {ABC} \right)  \cr  & mp\left( {A{\rm{D}}E} \right) \bot mp\left( {ABC} \right)  \cr  & HK = mp\left( {A{\rm{D}}E} \right) \cap mp\left( {BFK} \right) \cr} \)

Vậy \(HK \bot mp\left( {ABC} \right)\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.