Câu 26 trang 119 Sách bài tập Hình học 11 Nâng cao


Đề bài

Cho hình chóp S.ABCD có đáy là hình bình hành và SA = SC, SB = SD. Gọi O là  giao điểm của AC và BD.

a) Chứng minh rằng SO ⊥ mp(ABCD).

b) Gọi d là giao tuyến của mp(SAB) và  mp(SCD), d1 là giao tuyến của mp(SBC) và mp(SAD). Chứng minh rằng SO ⊥ mp(d, d1).

Lời giải chi tiết

 

a) Vì ABCD là hình bình hành và \(O = AC \cap B{\rm{D}}\) nên OA = OC và  OB = OD. Mặt khác SA = SC nên SO ⊥ AC và SB = SD nên SO ⊥BD.

Vậy SO ⊥ mp(ABCD)

b) Vì AB // CD mà \(d = mp\left( {SAB} \right) \cap mp\left( {SC{\rm{D}}} \right)\) nên d //AB và d qua S.

Tương tự d1 //AD và d1 qua S.

Do \(SO \bot mp\left( {ABC{\rm{D}}} \right)\) nên \(SO \bot d,SO \bot {d_1}\) .

Vậy \(SO \bot mp\left( {d,{d_1}} \right)\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.