Câu 17 trang 117 Sách bài tập Hình học 11 Nâng cao


Giải bài tập Câu 17 trang 117 Sách bài tập Hình học 11 Nâng cao

Đề bài

Cho hình hộp ABCD.A’B’C’D’ có các cạnh bằng a, \(\widehat {BA{\rm{D}}} = {60^0},\widehat {BAA'} = \widehat {DAA'} = {120^0}\) .

a) Tính góc giữa các cặp đường thẳng AB với A’D và AC’ với B’D.

b) Tính diện tích các hình A’B’CD và ACC’A’.

c) Tính góc giữa đường thẳng AC’ và các đường thẳng AB, AD, AA’.

Lời giải chi tiết

 

Đặt \(\overrightarrow {AB}  = \overrightarrow x ,\overrightarrow {A{\rm{D}}}  = \overrightarrow y ,\overrightarrow {AA'}  = \overrightarrow z \)  thì

\(\eqalign{  & {\overrightarrow x ^2} = {\overrightarrow y ^2} = {\overrightarrow z ^2} = {a^2}  \cr  & \overrightarrow x .\overrightarrow y  = {{{a^2}} \over 2};  \cr  & \overrightarrow x .\overrightarrow z  =  - {{{a^2}} \over 2};  \cr  & \overrightarrow y .\overrightarrow z  =  - {{{a^2}} \over 2} \cr} \)

a) Vì AB // A’B’ nên góc giữa AB và A’D bằng góc giữa A’B’ và A’D, đó là góc \(\widehat {DA'B'}\)  hoặc \({180^0} - \widehat {DA'B'}\) .

Đặt \(\widehat {DA'B'} = \alpha \).

Ta có:

 \(\eqalign{  & A'D = a\sqrt 3 ,A'B' = a  \cr  & \overrightarrow {DB'}  = \overrightarrow x  - \overrightarrow y  + \overrightarrow z   \cr  &  \Rightarrow {\overrightarrow {DB'} ^2} = 3{{\rm{a}}^2} - {a^2} - {a^2} + {a^2} = 2{{\rm{a}}^2} \cr} \)

Vậy \(2{{\rm{a}}^2} = {a^2} + 3{{\rm{a}}^2} - 2{\rm{a}}.a\sqrt 3 \cos \alpha  \Rightarrow \cos \alpha  = {1 \over {\sqrt 3 }}\).

Như thế góc giữa A’D và AB bằng α mà \(\cos \alpha  = {1 \over {\sqrt 3 }}\)

\(\eqalign{  & \overrightarrow {AC'}  = \overrightarrow x  + \overrightarrow y  + \overrightarrow z   \cr  &  \Rightarrow {\overrightarrow {AC'} ^2} = 3{a^2} + {a^2} - {a^2} - {a^2} = 2{a^2} \cr} \)

Dễ thấy AB’ = a.

Ta có ADC’B’ là hình bình hành mà AD = AB’, AC’ = B’D nên tứ giác ADC’B’ là hình vuông. Vậy AC’ ⊥ B’D, tức là góc giữa AC’ và B’D bằng 90°.

b)

\({S_{A'B'C{\rm{D}}}} = A'D.A'B'\sin \widehat {DA'B'} = a\sqrt 3 .a.{{\sqrt 6 } \over 3}\) .

Vậy \({S_{A'B'C{\rm{D}}}} = {a^2}\sqrt 2 \)

Đặt \(\widehat {ACC'} = \beta \)  thì \(AC{'^2} = A{C^2} + CC{'^2} - 2{\rm{A}}C.CC'.\cos \beta \)

hay

\(\eqalign{  & 2{a^2} = 3{a^2} + {a^2} - 2a\sqrt 3 .a.\cos \beta   \cr  &  \Rightarrow \cos \beta  = {1 \over {\sqrt 3 }} \Rightarrow \sin \beta  = {{\sqrt 6 } \over 3} \cr} \)

Vậy \({S_{ACC'A'}} = AC.CC'.\sin \beta  = a\sqrt 3 .a.{{\sqrt 6 } \over 3} = {a^2}\sqrt 2 \)

c) Do \(\overrightarrow {AC'}  = \overrightarrow x  + \overrightarrow y  + \overrightarrow z \)

Suy ra:

\(\eqalign{  & \overrightarrow {AC'} .\overrightarrow {AB}  = \left( {\overrightarrow x  + \overrightarrow y  + \overrightarrow z } \right)\overrightarrow x   \cr  &  = {a^2} + {{{a^2}} \over 2} - {{{a^2}} \over 2} = {a^2} \cr} \)

hay

 \(\eqalign{  & \left| {\overrightarrow {AC'} } \right|\left| {\overrightarrow {AB} } \right|\cos \gamma  = {a^2}  \cr  &  \Rightarrow \cos \gamma  = {1 \over {\sqrt 2 }} \Rightarrow \gamma  = {45^0} \cr} \)

Vậy góc giữa AC’ và AB bằng 45°.

\(\eqalign{  & \overrightarrow {AC'} .\overrightarrow {A{\rm{D}}}  = \left( {\overrightarrow x  + \overrightarrow y  + \overrightarrow z } \right)\overrightarrow y   \cr  &  = {{{a^2}} \over 2} + {a^2} - {{{a^2}} \over 2} = {a^2} \cr} \)

hay

\(\eqalign{  & \left| {\overrightarrow {AC'} } \right|.\left| {\overrightarrow {A{\rm{D}}} } \right|\cos \varphi  = {a^2}  \cr  &  \Rightarrow \cos \varphi  = {1 \over {\sqrt 2 }} \Rightarrow \varphi  = {45^0} \cr} \)

Vậy góc giữa AC’ và AD bằng 45°.

\(\eqalign{  & \overrightarrow {AC'} .\overrightarrow {AA'}  = \left( {\overrightarrow x  + \overrightarrow y  + \overrightarrow z } \right)\overrightarrow z   \cr  &  =  - {{{a^2}} \over 2} - {{{a^2}} \over 2} + {a^2} = 0 \cr} \)

Vậy góc giữa AC’ và AA’ bằng 90°.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài