Câu 17 trang 117 Sách bài tập Hình học 11 Nâng cao>
Giải bài tập Câu 17 trang 117 Sách bài tập Hình học 11 Nâng cao
Đề bài
Cho hình hộp ABCD.A’B’C’D’ có các cạnh bằng a, \(\widehat {BA{\rm{D}}} = {60^0},\widehat {BAA'} = \widehat {DAA'} = {120^0}\) .
a) Tính góc giữa các cặp đường thẳng AB với A’D và AC’ với B’D.
b) Tính diện tích các hình A’B’CD và ACC’A’.
c) Tính góc giữa đường thẳng AC’ và các đường thẳng AB, AD, AA’.
Lời giải chi tiết
Đặt \(\overrightarrow {AB} = \overrightarrow x ,\overrightarrow {A{\rm{D}}} = \overrightarrow y ,\overrightarrow {AA'} = \overrightarrow z \) thì
\(\eqalign{ & {\overrightarrow x ^2} = {\overrightarrow y ^2} = {\overrightarrow z ^2} = {a^2} \cr & \overrightarrow x .\overrightarrow y = {{{a^2}} \over 2}; \cr & \overrightarrow x .\overrightarrow z = - {{{a^2}} \over 2}; \cr & \overrightarrow y .\overrightarrow z = - {{{a^2}} \over 2} \cr} \)
a) Vì AB // A’B’ nên góc giữa AB và A’D bằng góc giữa A’B’ và A’D, đó là góc \(\widehat {DA'B'}\) hoặc \({180^0} - \widehat {DA'B'}\) .
Đặt \(\widehat {DA'B'} = \alpha \).
Ta có:
\(\eqalign{ & A'D = a\sqrt 3 ,A'B' = a \cr & \overrightarrow {DB'} = \overrightarrow x - \overrightarrow y + \overrightarrow z \cr & \Rightarrow {\overrightarrow {DB'} ^2} = 3{{\rm{a}}^2} - {a^2} - {a^2} + {a^2} = 2{{\rm{a}}^2} \cr} \)
Vậy \(2{{\rm{a}}^2} = {a^2} + 3{{\rm{a}}^2} - 2{\rm{a}}.a\sqrt 3 \cos \alpha \Rightarrow \cos \alpha = {1 \over {\sqrt 3 }}\).
Như thế góc giữa A’D và AB bằng α mà \(\cos \alpha = {1 \over {\sqrt 3 }}\)
\(\eqalign{ & \overrightarrow {AC'} = \overrightarrow x + \overrightarrow y + \overrightarrow z \cr & \Rightarrow {\overrightarrow {AC'} ^2} = 3{a^2} + {a^2} - {a^2} - {a^2} = 2{a^2} \cr} \)
Dễ thấy AB’ = a.
Ta có ADC’B’ là hình bình hành mà AD = AB’, AC’ = B’D nên tứ giác ADC’B’ là hình vuông. Vậy AC’ ⊥ B’D, tức là góc giữa AC’ và B’D bằng 90°.
b)
\({S_{A'B'C{\rm{D}}}} = A'D.A'B'\sin \widehat {DA'B'} = a\sqrt 3 .a.{{\sqrt 6 } \over 3}\) .
Vậy \({S_{A'B'C{\rm{D}}}} = {a^2}\sqrt 2 \)
Đặt \(\widehat {ACC'} = \beta \) thì \(AC{'^2} = A{C^2} + CC{'^2} - 2{\rm{A}}C.CC'.\cos \beta \)
hay
\(\eqalign{ & 2{a^2} = 3{a^2} + {a^2} - 2a\sqrt 3 .a.\cos \beta \cr & \Rightarrow \cos \beta = {1 \over {\sqrt 3 }} \Rightarrow \sin \beta = {{\sqrt 6 } \over 3} \cr} \)
Vậy \({S_{ACC'A'}} = AC.CC'.\sin \beta = a\sqrt 3 .a.{{\sqrt 6 } \over 3} = {a^2}\sqrt 2 \)
c) Do \(\overrightarrow {AC'} = \overrightarrow x + \overrightarrow y + \overrightarrow z \)
Suy ra:
\(\eqalign{ & \overrightarrow {AC'} .\overrightarrow {AB} = \left( {\overrightarrow x + \overrightarrow y + \overrightarrow z } \right)\overrightarrow x \cr & = {a^2} + {{{a^2}} \over 2} - {{{a^2}} \over 2} = {a^2} \cr} \)
hay
\(\eqalign{ & \left| {\overrightarrow {AC'} } \right|\left| {\overrightarrow {AB} } \right|\cos \gamma = {a^2} \cr & \Rightarrow \cos \gamma = {1 \over {\sqrt 2 }} \Rightarrow \gamma = {45^0} \cr} \)
Vậy góc giữa AC’ và AB bằng 45°.
\(\eqalign{ & \overrightarrow {AC'} .\overrightarrow {A{\rm{D}}} = \left( {\overrightarrow x + \overrightarrow y + \overrightarrow z } \right)\overrightarrow y \cr & = {{{a^2}} \over 2} + {a^2} - {{{a^2}} \over 2} = {a^2} \cr} \)
hay
\(\eqalign{ & \left| {\overrightarrow {AC'} } \right|.\left| {\overrightarrow {A{\rm{D}}} } \right|\cos \varphi = {a^2} \cr & \Rightarrow \cos \varphi = {1 \over {\sqrt 2 }} \Rightarrow \varphi = {45^0} \cr} \)
Vậy góc giữa AC’ và AD bằng 45°.
\(\eqalign{ & \overrightarrow {AC'} .\overrightarrow {AA'} = \left( {\overrightarrow x + \overrightarrow y + \overrightarrow z } \right)\overrightarrow z \cr & = - {{{a^2}} \over 2} - {{{a^2}} \over 2} + {a^2} = 0 \cr} \)
Vậy góc giữa AC’ và AA’ bằng 90°.
Loigiaihay.com
- Câu 18 trang 117 Sách bài tập Hình học 11 Nâng cao
- Câu 19 trang 118 Sách bài tập Hình học 11 Nâng cao
- Câu 20 trang 118 Sách bài tập Hình học 11 Nâng cao
- Câu 21 trang 118 Sách bài tập Hình học 11 Nâng cao
- Câu 22 trang 118 Sách bài tập Hình học 11 Nâng cao
>> Xem thêm
Các bài khác cùng chuyên mục