Câu 29 trang 119 Sách bài tập Hình học 11 Nâng cao


Giải bài tập Câu 29 trang 119 Sách bài tập Hình học 11 Nâng cao

Đề bài

Cho hình chóp S.ABC có SB vuông góc với mp(ABC), ABC là tam giác vuông tại A.

a) Chứng minh rằng ACS là tam giác vuông.

b) Tính SA, SB, SC biết rằng \(\widehat {ACB} = \alpha ,\widehat {ACS} = \beta \) và BC = a.

Lời giải chi tiết

 

a) \(SA \bot \left( {ABC} \right)\) và \(BA \bot AC\) nên \(SA \bot AC\) tức là SAC là tam giác vuông tại A.

b) Ta có

\(\eqalign{  & AC = a\cos \alpha   \cr  & SA = AC\tan \beta  = a\cos \alpha \tan \beta   \cr  & SC = {{AC} \over {\cos \beta }} = {{a\cos \alpha } \over {\cos \beta }}  \cr  & S{B^2} = S{C^2} - B{C^2}  \cr  &   = {{{a^2}{{\cos }^2}\alpha } \over {{{\cos }^2}\beta }} - {a^2}  \cr  &  = {{{a^2}\left( {{{\cos }^2}\alpha  - {{\cos }^2}\beta } \right)} \over {{{\cos }^2}\beta }}  \cr  &  \Rightarrow SB = {a \over {\cos \beta }}.\sqrt {{{\cos }^2}\alpha  - {{\cos }^2}\beta }  \cr} \)

(Điều kiện để Câu toán có nghĩa là α, β phải thỏa mãn \({\cos ^2}\alpha  > {\cos ^2}\beta \)).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài