Câu 41 trang 122 Sách bài tập Hình học 11 Nâng cao


Đề bài

Cho tứ diện SABC, hai mặt phẳng (SAB) và (SBC) vuông góc với nhau và có SA vuông góc với mp(ABC), \(SB = a\sqrt 2 ,\widehat {B{\rm{S}}C} = {45^0},\widehat {ASB} = \alpha \).

a) Chứng minh rằng BC vuông góc với SB. Tìm điểm cách đều các điểm S, A, B, C.

b) Xác định α để hai mặt phẳng (SCA) và (SCB) tạo với nhau góc 60°.

Lời giải chi tiết

a) Vì

\(\eqalign{  & \left( {ABC} \right) \bot \left( {SAB} \right)  \cr  & \left( {SBC} \right) \bot \left( {SAB} \right) \cr} \)

mà \(BC = \left( {ABC} \right) \cap \left( {SBC} \right)\) nên \(BC \bot \left( {SAB} \right) \Rightarrow BC \bot SB\).

Như vậy, tứ diện SABC có \(\widehat {SAC} = {90^0}\) và \(\widehat {SBC} = {90^0}\) nên điểm cách đều S, A, B, C là trung điểm của SC.

Chú ý. Có thể chứng minh \(BC \bot SB\) như sau:

Kẻ \(A{B_1} \bot SB\) do \(\left( {SAB} \right) \bot \left( {SBC} \right)\) nên \(A{B_1} \bot \left( {SBC} \right)\)

\( \Rightarrow A{B_1} \bot BC\)

mặt khác \(BC \bot SA\)

\(\eqalign{  &  \Rightarrow BC \bot \left( {SAB} \right)  \cr  &  \Rightarrow BC \bot SB \cr} \)

b) Kẻ \(A{B_1} \bot SB,A{C_1} \bot SC\), dễ chứng minh được

\(A{B_1} \bot \left( {SBC} \right)\) và \(\left( {A{B_1}{C_1}} \right) \bot SC\).

Từ đó \(\widehat {A{C_1}{B_1}}\) là góc giữa hai mặt phẳng (SCA) và (SCB).

Xét ∆AB1C1 ta có \(A{B_1} = {B_1}{C_1}\tan {60^0}\)

mà \(A{B_1} = S{B_1}\tan \alpha ,{B_1}{C_1} = S{B_1}\sin {45^0}\).

Vậy hai mặt phẳng (SCA) và (SCB) tạo với nhau góc 60° khi và chỉ khi

\(S{B_1}\tan \alpha  = S{B_1}.{{\sqrt 2 } \over 2}.\sqrt 3  \Leftrightarrow \tan \alpha  = {{\sqrt 6 } \over 2}\).

Hệ thức này xác định α.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.